Аннотация:
В работе доказана сходимость mm-точечных аппроксимаций Паде набора mm голоморфных ростков функций, имеющих аналитические продолжения вдоль любых путей в расширенной комплексной плоскости,
не проходящих через конечное число точек. Полученный результат распространяет теорему Шталя со случая m=1m=1 на случай произвольного m∈N.
Библиография: 15 названий.
Образец цитирования:
В. И. Буслаев, “О сходимости m-точечных аппроксимаций Паде набора многозначных аналитических функций”, Матем. сб., 206:2 (2015), 5–30; V. I. Buslaev, “Convergence of m-point Padé approximants of a tuple of multivalued analytic functions”, Sb. Math., 206:2 (2015), 175–200
С. П. Суетин, “О скалярных подходах к изучению предельного распределения нулей многочленов Эрмита–Паде для системы Никишина”, УМН, 80:1(481) (2025), 85–152
Е. А. Рахманов, С. П. Суетин, “Аппроксимации Чебышёва–Паде для многозначных функций”, Тр. ММО, 83, № 2, МЦНМО, М., 2022, 319–344
В. И. Буслаев, “О нижней оценке скорости сходимости многоточечных аппроксимаций Паде кусочно аналитических функций”, Изв. РАН. Сер. матем., 85:3 (2021), 13–29; V. I. Buslaev, “On a lower bound for the rate of convergence of multipoint Padé approximants of piecewise analytic functions”, Izv. Math., 85:3 (2021), 351–366
М. Л. Ятцелев, “Сходимость двухточечных аппроксимаций Паде к кусочно голоморфным функциям”, Матем. сб., 212:11 (2021), 128–164; M. L. Yattselev, “Convergence of two-point Padé approximants to piecewise holomorphic functions”, Sb. Math., 212:11 (2021), 1626–1659
M. L. Yattselev, Math Notes, 110:5-6 (2021), 784
В. И. Буслаев, “О непрерывных дробях с предельно периодическими коэффициентами”, Матем. сб., 209:2 (2018), 47–65; V. I. Buslaev, “Continued fractions with limit periodic coefficients”, Sb. Math., 209:2 (2018), 187–205
В. И. Буслаев, “Об особых точках мероморфных функций, задаваемых непрерывными дробями”, Матем. заметки, 103:4 (2018), 490–502; V. I. Buslaev, “On Singular points of Meromorphic Functions Determined by Continued Fractions”, Math. Notes, 103:4 (2018), 527–536
Е. А. Рахманов, “Распределение нулей полиномов Эрмита–Паде в случае Анжелеско”, УМН, 73:3(441) (2018), 89–156; E. A. Rakhmanov, “Zero distribution for Angelesco Hermite–Padé polynomials”, Russian Math. Surveys, 73:3 (2018), 457–518
С. П. Суетин, “О новом подходе к задаче о распределении нулей полиномов Эрмита–Паде для системы Никишина”, Комплексный анализ, математическая физика и приложения, Сборник статей, Труды МИАН, 301, МАИК «Наука/Интерпериодика», М., 2018, 259–275; S. P. Suetin, “On a new approach to the problem of distribution of zeros of Hermite–Padé polynomials for a Nikishin system”, Proc. Steklov Inst. Math., 301 (2018), 245–261
С. П. Суетин, “О распределении нулей полиномов Эрмита–Паде для набора четырех функций”, УМН, 72:2(434) (2017), 191–192; S. P. Suetin, “On the distribution of the zeros of the Hermite–Padé polynomials for a quadruple of functions”, Russian Math. Surveys, 72:2 (2017), 375–377
А. В. Комлов, Р. В. Пальвелев, С. П. Суетин, Е. М. Чирка, “Аппроксимации Эрмита–Паде для мероморфных функций на компактной римановой поверхности”, УМН, 72:4(436) (2017), 95–130; A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, “Hermite–Padé approximants for meromorphic functions on a compact Riemann surface”, Russian Math. Surveys, 72:4 (2017), 671–706
В. И. Буслаев, “О теореме Ван Флека для предельно периодических непрерывных дробей общего вида”, Комплексный анализ и его приложения, Сборник статей. К 100-летию со дня рождения Бориса Владимировича Шабата, 85-летию со дня рождения Анатолия Георгиевича Витушкина и 85-летию со дня рождения Андрея Александровича Гончара, Труды МИАН, 298, МАИК «Наука/Интерпериодика», М., 2017, 75–100; V. I. Buslaev, “On the Van Vleck Theorem for Limit-Periodic Continued Fractions of General Form”, Proc. Steklov Inst. Math., 298 (2017), 68–93
В. И. Буслаев, “Аналог теоремы Гончара для $m$-точечного варианта гипотезы Лейтона”, Функциональные пространства, теория приближений, смежные разделы математического анализа, Сборник статей. К 110-летию со дня рождения академика Сергея Михайловича Никольского, Труды МИАН, 293, МАИК «Наука/Интерпериодика», М., 2016, 133–145; V. I. Buslaev, “An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture”, Proc. Steklov Inst. Math., 293 (2016), 127–139
Е. А. Рахманов, “Теорема Гончара–Шталя o $\rho^2$ и связанные с ней направления исследований по рациональным аппроксимациям аналитических функций”, Матем. сб., 207:9 (2016), 57–90; E. A. Rakhmanov, “The Gonchar-Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions”, Sb. Math., 207:9 (2016), 1236–1266
С. П. Суетин, “Распределение нулей полиномов Эрмита–Паде и локализация точек ветвления многозначных аналитических функций”, УМН, 71:5(431) (2016), 183–184; S. P. Suetin, “Zero distribution of Hermite–Padé polynomials and localization of branch points of multivalued analytic functions”, Russian Math. Surveys, 71:5 (2016), 976–978
В. И. Буслаев, “Емкость рационального прообраза компакта”, Матем. заметки, 100:6 (2016), 790–799; V. I. Buslaev, “The Capacity of the Rational Preimage of a Compact Set”, Math. Notes, 100:6 (2016), 781–790
V. I. Buslaev, S. P. Suetin, “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions”, J. Approx. Theory, 206 (2016), 48–67
В. И. Буслаев, “Емкость компакта в поле логарифмического потенциала”, Современные проблемы математики, механики и математической физики, Сборник статей, Труды МИАН, 290, МАИК «Наука/Интерпериодика», М., 2015, 254–271; V. I. Buslaev, “Capacity of a compact set in a logarithmic potential field”, Proc. Steklov Inst. Math., 290:1 (2015), 238–255
С. П. Суетин, “Распределение нулей полиномов Паде и аналитическое продолжение”, УМН, 70:5(425) (2015), 121–174; S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951
В. И. Буслаев, “Аналог теоремы Полиа для кусочно голоморфных функций”, Матем. сб., 206:12 (2015), 55–69; V. I. Buslaev, “An analogue of Polya's theorem for piecewise holomorphic functions”, Sb. Math., 206:12 (2015), 1707–1721