Аннотация:
Настоящая работа является продолжением [1]. В ней для одномерного случая исследуется задача об асимптотике вероятности попадания сумм независимых одинаково распределенных случайных величин в полуинтервал $[x,x+\Delta)$ в области сверхбольших уклонений, когда относительные (нормированные) уклонения $\alpha=x/n$ неограниченно возрастают вместе с числом слагаемых $n$ и в то же время находятся в области аналитичности функции уклонений одного слагаемого. В первой части работы в многомерном случае найдены достаточные условия, при которых в области сверхбольших уклонений имеют место интегро-локальные и локальные теоремы того же универсального вида, что и в области больших и нормальных уклонений.
Во второй части работы рассматриваются те же задачи для трех классов наиболее распространенных одномерных распределений, для которых удается получить простые достаточные условия, позволяющие найти при $x/n\to \infty$ асимптотику изучаемых вероятностей в упомянутой выше универсальной форме. Это так называемые классы экспоненциально и «суперэкспоненциально» убывающих регулярно меняющихся распределений. Для них найдены также предельные теоремы для преобразований Крамера с параметром, близким к «критическому». Установлена характеризация нормального распределения с помощью преобразования Крамера. Получены асимптотические разложения для функции уклонений.
Ключевые слова:
функция уклонений, большие уклонения, сверхбольшие уклонения, интегро-локальная теорема, семиэкспоненциальные распределения, суперэкспоненциальные распределения, характеризация нормального закона, предельные теоремы для преобразования Крамера, асимптотические разложения функции уклонений.
Образец цитирования:
А. А. Боровков, А. А. Могульский, “О больших и сверхбольших уклонениях сумм независимых случайных векторов при выполнении условия Крамера. II”, Теория вероятн. и ее примен., 51:4 (2006), 641–673; Theory Probab. Appl., 51:4 (2007), 567–594
Igor Kortchemski, Cyril Marzouk, “Large deviation local limit theorems and limits of biconditioned planar maps”, Ann. Appl. Probab., 33:5 (2023)
Л. В. Розовский, “Большие уклонения суммы независимых случайных величин, распределения которых имеют быстро убывающие хвосты”, Теория вероятн. и ее примен., 67:3 (2022), 456–470; L. V. Rozovskii, “Large deviations of a sum of independent random variables with distributions with rapidly decreasing tails”, Theory Probab. Appl., 67:3 (2022), 363–374
L. V. Rozovsky, “On Asymptotic Behavior of the Convolution of Distributions with Regularly Exponentially Decreasing Tails”, J Math Sci, 258:6 (2021), 920
Л. В. Розовский, “Об асимптотике свертки распределений с регулярно экспоненциально убывающими хвостами”, Вероятность и статистика. 28, Зап. научн. сем. ПОМИ, 486, ПОМИ, СПб., 2019, 265–274
Fan X., “Sharp Large Deviations For Sums of Bounded From Above Random Variables”, Sci. China-Math., 60:12 (2017), 2465–2480
Л. В. Розовский, “Вероятности сверхбольших уклонений сумм независимых случайных величин с экспоненциально убывающим распределением. II”, Теория вероятн. и ее примен., 59:1 (2014), 187–196; L. V. Rozovskii, “Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distributions. II”, Theory Probab. Appl., 59:1 (2015), 168–177
Н. В. Грибкова, Р. Хэлмерс, “Аппроксимация второго порядка для слабо усеченных средних”, Теория вероятн. и ее примен., 58:3 (2013), 417–453; N. V. Gribkova, R. Helmers, “Second order approximations for slightly trimmed means”, Theory Probab. Appl., 58:3 (2014), 383–412
Rozovsky L., “Super large deviation probabilities for sums of independent lattice random variables with exponential decreasing tails”, Statistics & Probability Letters, 82:1 (2012), 72–76
А. А. Боровков, А. А. Могульский, “Экспоненциальные неравенства чебышевского типа для сумм случайных векторов и для траекторий случайных блужданий”, Теория вероятн. и ее примен., 56:1 (2011), 3–29; A. A. Borovkov, A. A. Mogul'skii, “Chebyshev type exponential inequalities for sums of random vectors and random walk trajectories”, Theory Probab. Appl., 56:1 (2012), 21–43
А. А. Боровков, А. А. Могульский, “О принципах больших уклонений в метрических пространствах”, Сиб. матем. журн., 51:6 (2010), 1251–1269; A. A. Borovkov, A. A. Mogul'skiǐ, “On large deviation principles in metric spaces”, Siberian Math. J., 51:6 (2010), 989–1003
А. А. Могульский, “Интегральные и интегро-локальные теоремы для сумм случайных величин с семиэкспоненциальными распределениями”, Сиб. электрон. матем. изв., 6 (2009), 251–271
А. А. Могульский, Ч. Пагма, “Сверхбольшие уклонения сумм случайных величин с общим арифметическим суперэкспоненциальным распределением”, Матем. тр., 11:1 (2008), 81–112; A. A. Mogulskiǐ, Ch. Pagma, “Superlarge deviations for sums of random variables with arithmetical super-exponential distributions”, Siberian Adv. Math., 18:3 (2008), 185–208
А. А. Могульский, “Интегро-локальная теорема, действующая на всей полуоси, для сумм случайных величин с правильно меняющимися распределениями”, Сиб. матем. журн., 49:4 (2008), 837–854; A. A. Mogul'skii, “An integro-local theorem applicable on the whole half-axis to the sums of random variables with regularly varying distributions”, Siberian Math. J., 49:4 (2008), 669–683
А. А. Боровков, “Тауберовы и абелевы теоремы для быстро убывающих распределений и их приложения к устойчивым законам”, Сиб. матем. журн., 49:5 (2008), 1007–1018; A. A. Borovkov, “Tauberian and Abelian theorems for rapidly decaying distributions and their applications to stable laws”, Siberian Math. J., 49:5 (2008), 796–805
А. А. Боровков, А. А. Могульский, “Вероятности больших уклонений для сумм независимых случайных векторов на границе и вне крамеровской зоны. I”, Теория вероятн. и ее примен., 53:2 (2008), 336–344; A. A. Borovkov, A. A. Mogul'skii, “On Large Deviations of Sums of Independent Random Vectors on the Boundary and Outside of the Cramér Zone. I”, Theory Probab. Appl., 53:2 (2009), 301–311
Л. В. Розовский, “Вероятности сверхбольших уклонений сумм независимых случайных величин с экспоненциально убывающим распределением”, Теория вероятн. и ее примен., 52:1 (2007), 175–179; L. V. Rozovskii, “Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distribution”, Theory Probab. Appl., 52:1 (2008), 167–171
А. А. Боровков, А. А. Могульский, “Интегро-локальные и интегральные теоремы для сумм случайных величин с семиэкспоненциальными распределениями”, Сиб. матем. журн., 47:6 (2006), 1218–1257; A. A. Borovkov, A. A. Mogul'skii, “Integro-local and integral theorems for sums of random variables with semiexponential distributions”, Siberian Math. J., 47:6 (2006), 990–1026