Loading [MathJax]/jax/output/CommonHTML/jax.js
Сибирский математический журнал
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. матем. журн.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сибирский математический журнал, 2008, том 49, номер 4, страницы 837–854 (Mi smj1882)  

Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)

Интегро-локальная теорема, действующая на всей полуоси, для сумм случайных величин с правильно меняющимися распределениями

А. А. Могульский

Институт математики им. С. Л. Соболева СО РАН
Список литературы:
Аннотация: Получена интегро-локальная предельная теорема для сумм S(n)=ξ(1)++ξ(n) независимых случайных величин с общим распределением, правый хвост которого правильно меняется, т.е. имеет вид P(ξt)=tβL(t), β>2, L(t) – медленно меняющаяся функция. Эта теорема описывает асимптотическое поведение для фиксированного Δ>0 и при x вероятностей
P(S(n)[x,x+Δ))
на всей правой полуоси, т.е. в зоне, где действует нормальное приближение, в зоне, где распределение S(n) аппроксимируется распределением максимального слагаемого, а также “на стыке” этих двух зон.
Ключевые слова: правильно меняющееся распределение, интегро-локальная теорема, интегральная теорема, теорема, действующая на всей полуоси, функция уклонений, большие уклонения, зона, где действует нормальное приближение, зона аппроксимации максимальным слагаемым.
Статья поступила: 16.01.2007
Окончательный вариант: 14.05.2007
Англоязычная версия:
Siberian Mathematical Journal, 2008, Volume 49, Issue 4, Pages 669–683
DOI: https://doi.org/10.1007/s11202-008-0064-2
Реферативные базы данных:
УДК: 519.21
Образец цитирования: А. А. Могульский, “Интегро-локальная теорема, действующая на всей полуоси, для сумм случайных величин с правильно меняющимися распределениями”, Сиб. матем. журн., 49:4 (2008), 837–854; Siberian Math. J., 49:4 (2008), 669–683
Цитирование в формате AMSBIB
\RBibitem{Mog08}
\by А.~А.~Могульский
\paper Интегро-локальная теорема, действующая на всей полуоси, для сумм случайных величин с~правильно меняющимися распределениями
\jour Сиб. матем. журн.
\yr 2008
\vol 49
\issue 4
\pages 837--854
\mathnet{http://mi.mathnet.ru/smj1882}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2456695}
\zmath{https://zbmath.org/?q=an:1164.60332}
\elib{https://elibrary.ru/item.asp?id=10429011}
\transl
\jour Siberian Math. J.
\yr 2008
\vol 49
\issue 4
\pages 669--683
\crossref{https://doi.org/10.1007/s11202-008-0064-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000258913200010}
\elib{https://elibrary.ru/item.asp?id=13584085}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51549083419}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/smj1882
  • https://www.mathnet.ru/rus/smj/v49/i4/p837
  • Эта публикация цитируется в следующих 6 статьяx:
    1. А. В. Логачев, А. А. Могульский, “Принцип умеренно больших уклонений для траекторий неоднородных случайных блужданий”, Сиб. матем. журн., 64:1 (2023), 133–151  mathnet  crossref; A. V. Logachov, A. A. Mogul'skii, “Moderate deviation principles for the trajectories of inhomogeneous random walks”, Siberian Math. J., 64:1 (2023), 111–127  crossref
    2. Bloznelis M., “Local Probabilities of Randomly Stopped Sums of Power-Law Lattice Random Variables”, Lith. Math. J., 59:4, SI (2019), 437–468  crossref  mathscinet  zmath  isi  scopus
    3. Delbaen F., Kowalski E., Nikeghbali A., “Mod-Phi Convergence”, Int. Math. Res. Notices, 2015, no. 11, 3445–3485  crossref  mathscinet  zmath  isi  elib  scopus
    4. А. А. Боровков, К. А. Боровков, “Аналоги теоремы Блэкуелла для взвешенных функций восстановления”, Сиб. матем. журн., 55:4 (2014), 724–743  mathnet  mathscinet; A. A. Borovkov, K. A. Borovkov, “Blackwell-type theorems for weighted renewal functions”, Siberian Math. J., 55:4 (2014), 589–605  crossref  isi
    5. А. А. Могульский, “Интегральные и интегро-локальные теоремы для сумм случайных величин с семиэкспоненциальными распределениями”, Сиб. электрон. матем. изв., 6 (2009), 251–271  mathnet  mathscinet  elib
    6. А. А. Боровков, А. А. Могульский, “Вероятности больших уклонений для сумм независимых случайных векторов на границе и вне крамеровской зоны. I”, Теория вероятн. и ее примен., 53:2 (2008), 336–344  mathnet  crossref  zmath; A. A. Borovkov, A. A. Mogul'skii, “On Large Deviations of Sums of Independent Random Vectors on the Boundary and Outside of the Cramér Zone. I”, Theory Probab. Appl., 53:2 (2009), 301–311  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Статистика просмотров:
    Страница аннотации:363
    PDF полного текста:95
    Список литературы:62
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025