Loading [MathJax]/jax/output/SVG/config.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 1, Pages 111–144
DOI: https://doi.org/10.1070/IM8949
(Mi im8949)
 

This article is cited in 15 scientific papers (total in 15 papers)

On the critical exponent “instantaneous blow-up” versus “local solubility” in the Cauchy problem for a model equation of Sobolev type

M. O. Korpusova, A. A. Panina, A. E. Shishkovb

a Faculty of Physics, Lomonosov Moscow State University
b Peoples' Friendship University of Russia, Moscow
References:
Abstract: We consider the Cauchy problem for a model partial differential equation of order three with a non-linearity of the form $|\nabla u|^q$. We prove that when $q\in(1,3/2]$ the Cauchy problem in $\mathbb{R}^3$ has no local-in-time weak solution for a large class of initial functions, while when $q>3/2$ there is a local weak solution.
Keywords: finite-time blow-up, non-linear waves, instantaneous blow-up.
Funding agency Grant number
Russian Science Foundation 18-11-00042
Ministry of Education and Science of the Russian Federation 5-100
This paper was written with the support of the PFUR Programme “5-100” (Korpusov, Shishkov) and Russian Science Foundation grant no. 18-11-00042 (Panin).
Received: 02.07.2019
Bibliographic databases:
Document Type: Article
UDC: 517.957
MSC: 35B44, 35G25
Language: English
Original paper language: Russian
Citation: M. O. Korpusov, A. A. Panin, A. E. Shishkov, “On the critical exponent “instantaneous blow-up” versus “local solubility” in the Cauchy problem for a model equation of Sobolev type”, Izv. Math., 85:1 (2021), 111–144
Citation in format AMSBIB
\Bibitem{KorPanShi21}
\by M.~O.~Korpusov, A.~A.~Panin, A.~E.~Shishkov
\paper On the critical exponent ``instantaneous~blow-up'' versus ``local solubility'' in the Cauchy~problem for a~model equation of Sobolev type
\jour Izv. Math.
\yr 2021
\vol 85
\issue 1
\pages 111--144
\mathnet{http://mi.mathnet.ru/eng/im8949}
\crossref{https://doi.org/10.1070/IM8949}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4223888}
\zmath{https://zbmath.org/?q=an:1460.35053}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85..111K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000620163900001}
\elib{https://elibrary.ru/item.asp?id=46756604}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101702243}
Linking options:
  • https://www.mathnet.ru/eng/im8949
  • https://doi.org/10.1070/IM8949
  • https://www.mathnet.ru/eng/im/v85/i1/p118
  • This publication is cited in the following 15 articles:
    1. M. V. Artemeva, M. O. Korpusov, A. A. Panin, “On the solvability of the Cauchy problem for a thermal–electrical model”, Theoret. and Math. Phys., 222:2 (2025), 183–197  mathnet  crossref  crossref  adsnasa
    2. Tahir Shahzad, Muhammad O. Ahmed, Muhammad Sajid Iqbal, Muhammad Zafarullah Baber, Muhammad Waqas Yasin, A. S. A. Alsubaie, K. H. Mahmoud, Mustafa Inc, “Explicit solitary wave solutions for the nonlinear equations in semiconductor and magnetic field with their stability analysis”, Opt Quant Electron, 56:1 (2024)  crossref
    3. M. V. Artemeva, M. O. Korpusov, “On the Existence of a Nonextendable Solution of the Cauchy problem for a $(1+1)$-Dimensional Thermal-Electrical Model”, Math. Notes, 115:5 (2024), 653–663  mathnet  crossref  crossref  mathscinet
    4. M. V. Artemeva, M. O. Korpusov, “On the blow-up of the solution of a $(1+1)$-dimensional thermal–electrical model”, Theoret. and Math. Phys., 219:2 (2024), 748–760  mathnet  crossref  crossref  mathscinet  adsnasa
    5. Meiirkhan B. Borikhanov, Michael Ruzhansky, Berikbol T. Torebek, “Instantaneous blow-up solutions for nonlinear Sobolev-type equations on the Heisenberg groups”, DCDS-S, 2024  crossref
    6. M. V Artemeva, M. O Korpusov, “THE CAUCHY PROBLEM FOR AN NONLINEAR WAVE EQUATION”, Differencialʹnye uravneniâ, 60:10 (2024), 1299  crossref
    7. M. V. Artemeva, M. O. Korpusov, “On the existence of a nonextendable solution of the Cauchy problem for a $(3+1)$-dimensional thermal–electrical model”, Theoret. and Math. Phys., 221:3 (2024), 2207–2218  mathnet  crossref  crossref  adsnasa
    8. M. V. Artemeva, M. O. Korpusov, “The Cauchy Problem for a Nonlinear Wave Equation”, Diff Equat, 60:10 (2024), 1369  crossref
    9. M. O. Korpusov, A. Yu. Perlov, A. V. Tymoshenko, R. S. Shafir, “Global-in-time solvability of a nonlinear system of equations of a thermal–electrical model with quadratic nonlinearity”, Theoret. and Math. Phys., 217:2 (2023), 1743–1754  mathnet  crossref  crossref  mathscinet  adsnasa
    10. M. O. Korpusov, A. Yu. Perlov, A. V. Tymoshenko, R. S. Shafir, “On the Blow-Up of the Solution of a Nonlinear System of Equations of a Thermal-Electrical Model”, Math. Notes, 114:5 (2023), 850–861  mathnet  crossref  crossref  mathscinet
    11. A. V. Keller, “Sobolev-type systems and applied problems”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:4 (2023), 5–32  mathnet  mathnet  crossref
    12. N. A. Manakova, O. V. Gavrilova, K. V. Perevozhikova, “Semilinear models of Sobolev type. Non-uniqueness of solution to the Showalter–Sidorov problem”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022), 84–100  mathnet  mathnet  crossref  zmath
    13. Korpusov M.O. Panin A.A., “On the Blow-Up of the Solution and on the Local and Global Solvability of the Cauchy Problem For a Nonlinear Equation in Holder Spaces”, J. Math. Anal. Appl., 504:2 (2021), 125469  crossref  mathscinet  zmath  isi  scopus
    14. Zamyshlyaeva A., Lut A., “Inverse Problem For the Sobolev Type Equation of Higher Order”, Mathematics, 9:14 (2021), 1647  crossref  mathscinet  isi
    15. M. O. Korpusov, G. I. Shlyapugin, “O razrushenii reshenii zadach Koshi dlya odnogo klassa nelineinykh uravnenii teorii ferritov”, Materialy Vserossiiskoi nauchnoi konferentsii «Differentsialnye uravneniya i ikh prilozheniya», posvyaschennoi 85-letiyu professora M. T. Terekhina. Ryazanskii gosudarstvennyi universitet im. S.A. Esenina, Ryazan, 17–18 maya 2019 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 185, VINITI RAN, M., 2020, 79–131  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:600
    Russian version PDF:119
    English version PDF:53
    Russian version HTML:263
    References:80
    First page:31
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025