Abstract:
We consider one thermal-electrical (1+1)-dimensional model of heating a semiconductor in an electric field. For the corresponding Cauchy problem, we prove the existence of a classical solution nonextendable in time and obtain an a priori estimate global in time.
Keywords:
nonlinear equations of Sobolev type, destruction, blow-up, local solvability, nonlinear capacity, destruction time estimates.
Citation:
M. V. Artemeva, M. O. Korpusov, “On the Existence of a Nonextendable Solution of the Cauchy problem for a (1+1)-Dimensional Thermal-Electrical Model”, Mat. Zametki, 115:5 (2024), 645–657; Math. Notes, 115:5 (2024), 653–663
\Bibitem{ArtKor24}
\by M.~V.~Artemeva, M.~O.~Korpusov
\paper On the Existence of a Nonextendable Solution of the Cauchy problem for a $(1+1)$-Dimensional Thermal-Electrical Model
\jour Mat. Zametki
\yr 2024
\vol 115
\issue 5
\pages 645--657
\mathnet{http://mi.mathnet.ru/mzm14232}
\crossref{https://doi.org/10.4213/mzm14232}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4774028}
\transl
\jour Math. Notes
\yr 2024
\vol 115
\issue 5
\pages 653--663
\crossref{https://doi.org/10.1134/S0001434624050018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85198648992}