Abstract:
A system of equations with a quadratic nonlinearity in the electric field potential and temperature is proposed to describe the process of heating of semiconductor elements of an electrical board, with the thermal and electrical “breakdowns” possible in the course of time. For this system of equations, the existence of a classical solution not extendable in time is proved and sufficient conditions for a unique global-in-time solvability are also obtained.
Keywords:
nonlinear equations of Sobolev type, blow-up, local solubility, nonlinear capacity, estimates of blow-up time.
Citation:
M. O. Korpusov, A. Yu. Perlov, A. V. Tymoshenko, R. S. Shafir, “Global-in-time solvability of a nonlinear system of equations of a thermal–electrical model with quadratic nonlinearity”, TMF, 217:2 (2023), 378–390; Theoret. and Math. Phys., 217:2 (2023), 1743–1754
\Bibitem{KorPerTym23}
\by M.~O.~Korpusov, A.~Yu.~Perlov, A.~V.~Tymoshenko, R.~S.~Shafir
\paper Global-in-time solvability of a~nonlinear system of equations of a~thermal--electrical model with quadratic nonlinearity
\jour TMF
\yr 2023
\vol 217
\issue 2
\pages 378--390
\mathnet{http://mi.mathnet.ru/tmf10520}
\crossref{https://doi.org/10.4213/tmf10520}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4670396}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...217.1743K}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 217
\issue 2
\pages 1743--1754
\crossref{https://doi.org/10.1134/S0040577923110090}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85177655959}
Linking options:
https://www.mathnet.ru/eng/tmf10520
https://doi.org/10.4213/tmf10520
https://www.mathnet.ru/eng/tmf/v217/i2/p378
This publication is cited in the following 8 articles:
M. V. Artemeva, M. O. Korpusov, A. A. Panin, “On the solvability of the Cauchy problem for a thermal–electrical model”, Theoret. and Math. Phys., 222:2 (2025), 183–197
M. V. Artemeva, M. O. Korpusov, “On the Existence of a Nonextendable Solution of the Cauchy problem for a (1+1)-Dimensional Thermal-Electrical Model”, Math. Notes, 115:5 (2024), 653–663
M. V. Artemeva, M. O. Korpusov, “On the blow-up of the solution of a (1+1)-dimensional thermal–electrical model”, Theoret. and Math. Phys., 219:2 (2024), 748–760
M. O. Korpusov, R. S. Shafir, A. K. Matveeva, “Numerical Diagnostics of Solution Blow-Up in a Thermoelectric Semiconductor Model”, Comput. Math. and Math. Phys., 64:7 (2024), 1595
M. V Artemeva, M. O Korpusov, “THE CAUCHY PROBLEM FOR AN NONLINEAR WAVE EQUATION”, Differencialʹnye uravneniâ, 60:10 (2024), 1299
M. V. Artemeva, M. O. Korpusov, “On the existence of a nonextendable solution of the Cauchy problem for a (3+1)-dimensional thermal–electrical model”, Theoret. and Math. Phys., 221:3 (2024), 2207–2218
M. O. Korpusov, R. S. Shafir, A. K. Matveeva, “Numerical diagnostics of solution blow-up in a thermoelectric semiconductor model”, Comput. Math. Math. Phys., 64:7 (2024), 1595–1602
M. V. Artemeva, M. O. Korpusov, “The Cauchy Problem for a Nonlinear Wave
Equation”, Diff Equat, 60:10 (2024), 1369