Abstract:
We consider a $(1+1)$-dimensional thermal–electrical model of semiconductor heating in an electric field. For the corresponding initial-boundary value problem, we prove the existence of a classical solution that cannot be continued in time and obtain sufficient conditions for the blow-up of the solution in a finite time.
Keywords:
nonlinear Sobolev-type equations, solution blow-up, local solvability, nonlinear capacity, blow-up time estimates.
Citation:
M. V. Artemeva, M. O. Korpusov, “On the blow-up of the solution of a $(1+1)$-dimensional thermal–electrical model”, TMF, 219:2 (2024), 249–262; Theoret. and Math. Phys., 219:2 (2024), 748–760
\Bibitem{ArtKor24}
\by M.~V.~Artemeva, M.~O.~Korpusov
\paper On the~blow-up of the~solution of a~$(1+1)$-dimensional thermal--electrical model
\jour TMF
\yr 2024
\vol 219
\issue 2
\pages 249--262
\mathnet{http://mi.mathnet.ru/tmf10665}
\crossref{https://doi.org/10.4213/tmf10665}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4749817}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024TMP...219..748A}
\transl
\jour Theoret. and Math. Phys.
\yr 2024
\vol 219
\issue 2
\pages 748--760
\crossref{https://doi.org/10.1134/S0040577924050040}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85194470107}
Linking options:
https://www.mathnet.ru/eng/tmf10665
https://doi.org/10.4213/tmf10665
https://www.mathnet.ru/eng/tmf/v219/i2/p249
This publication is cited in the following 3 articles:
M. V. Artemeva, M. O. Korpusov, A. A. Panin, “On the solvability of the Cauchy problem for a thermal–electrical model”, Theoret. and Math. Phys., 222:2 (2025), 183–197
M. V. Artemeva, M. O. Korpusov, “On the Existence of a Nonextendable Solution of the Cauchy problem for a $(1+1)$-Dimensional Thermal-Electrical Model”, Math. Notes, 115:5 (2024), 653–663
M. V. Artemeva, M. O. Korpusov, “On the existence of a nonextendable solution of the Cauchy problem for a $(3+1)$-dimensional thermal–electrical model”, Theoret. and Math. Phys., 221:3 (2024), 2207–2218