Abstract:
A thermal–electrical $(3+1)$-dimensional model of heating a semiconductor in an electric field is considered. For the corresponding Cauchy problem, the existence of a classical solution nonextendable in time is proved and an a priori estimate global in time is obtained.
Keywords:
nonlinear Sobolev-type equations, local solvability, nonlinear capacity, blow-up time estimates.
Citation:
M. V. Artemeva, M. O. Korpusov, “On the existence of a nonextendable solution of the Cauchy problem for a $(3+1)$-dimensional thermal–electrical model”, TMF, 221:3 (2024), 702–715; Theoret. and Math. Phys., 221:3 (2024), 2207–2218
\Bibitem{ArtKor24}
\by M.~V.~Artemeva, M.~O.~Korpusov
\paper On the~existence of a~nonextendable solution of the~Cauchy problem for a~$(3+1)$-dimensional thermal--electrical model
\jour TMF
\yr 2024
\vol 221
\issue 3
\pages 702--715
\mathnet{http://mi.mathnet.ru/tmf10745}
\crossref{https://doi.org/10.4213/tmf10745}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024TMP...221.2207A}
\transl
\jour Theoret. and Math. Phys.
\yr 2024
\vol 221
\issue 3
\pages 2207--2218
\crossref{https://doi.org/10.1134/S0040577924120146}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85212973811}
Linking options:
https://www.mathnet.ru/eng/tmf10745
https://doi.org/10.4213/tmf10745
https://www.mathnet.ru/eng/tmf/v221/i3/p702
This publication is cited in the following 1 articles:
M. V. Artemeva, M. O. Korpusov, A. A. Panin, “On the solvability of the Cauchy problem for a thermal–electrical model”, Theoret. and Math. Phys., 222:2 (2025), 183–197