Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 185, Pages 79–131
DOI: https://doi.org/10.36535/0233-6723-2020-185-79-131
(Mi into704)
 

This article is cited in 2 scientific papers (total in 2 papers)

On blow-up of solutions of the Cauchy problems for a class of nonlinear equations of ferrite theory

M. O. Korpusov, G. I. Shlyapugin

Lomonosov Moscow State University
Full-text PDF (515 kB) Citations (2)
References:
Abstract: In this paper, we consider three nonlinear equations of the theory of magnets with gradient nonlinearities |u|q, t|u|q, and t2|u|q are considered. For the corresponding Cauchy problems, we obtain results on local-in-time unique solvability in the weak sense and on blow-up for a finite time. These three equations have the same critical exponent q=3/2 since weak solutions behave differently for 1<q3/2 and for q>3/2. By the method of nonlinear capacity proposed by S. I. Pokhozhaev, we obtain a priori estimates, which imply the absence of local and global weak solutions.
Keywords: nonlinear Sobolev-type equation, blow-up, local solvability, nonlinear capacity, estimates of the blow-up time.
Document Type: Article
UDC: 517.538
MSC: 35B44
Language: Russian
Citation: M. O. Korpusov, G. I. Shlyapugin, “On blow-up of solutions of the Cauchy problems for a class of nonlinear equations of ferrite theory”, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 185, VINITI, Moscow, 2020, 79–131
Citation in format AMSBIB
\Bibitem{KorShl20}
\by M.~O.~Korpusov, G.~I.~Shlyapugin
\paper On blow-up of solutions of the Cauchy problems for a class of nonlinear equations of ferrite theory
\inbook Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 185
\pages 79--131
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into704}
\crossref{https://doi.org/10.36535/0233-6723-2020-185-79-131}
Linking options:
  • https://www.mathnet.ru/eng/into704
  • https://www.mathnet.ru/eng/into/v185/p79
  • This publication is cited in the following 2 articles:
    1. A. N. Kulikov, D. A. Kulikov, D. G. Frolov, “Model Keinsa delovogo tsikla i zadacha o diffuzionnoi neustoichivosti”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 28 yanvarya – 2 fevralya 2021 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 207, VINITI RAN, M., 2022, 77–90  mathnet  crossref
    2. M. O. Korpusov, E. A. Ovsyannikov, “Local solvability, blow-up, and Hölder regularity of solutions to some Cauchy problems for nonlinear plasma wave equations: I. Green formulas”, Comput. Math. Math. Phys., 62:10 (2022), 1609–1631  mathnet  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :117
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025