Abstract:
In this paper, we consider three nonlinear equations of the theory of magnets with gradient nonlinearities |∇u|q, ∂t|∇u|q, and ∂2t|∇u|q are considered. For the corresponding Cauchy problems, we obtain results on local-in-time unique solvability in the weak sense and on blow-up for a finite time. These three equations have the same critical exponent q=3/2 since weak solutions behave differently for 1<q≤3/2 and for q>3/2. By the method of nonlinear capacity proposed by S. I. Pokhozhaev, we obtain a priori estimates, which imply the absence of local and global weak solutions.
Keywords:
nonlinear Sobolev-type equation, blow-up, local solvability, nonlinear capacity, estimates of the blow-up time.
Citation:
M. O. Korpusov, G. I. Shlyapugin, “On blow-up of solutions of the Cauchy problems for a class of nonlinear equations of ferrite theory”, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 185, VINITI, Moscow, 2020, 79–131
\Bibitem{KorShl20}
\by M.~O.~Korpusov, G.~I.~Shlyapugin
\paper On blow-up of solutions of the Cauchy problems for a class of nonlinear equations of ferrite theory
\inbook Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 185
\pages 79--131
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into704}
\crossref{https://doi.org/10.36535/0233-6723-2020-185-79-131}
Linking options:
https://www.mathnet.ru/eng/into704
https://www.mathnet.ru/eng/into/v185/p79
This publication is cited in the following 2 articles:
A. N. Kulikov, D. A. Kulikov, D. G. Frolov, “Model Keinsa delovogo tsikla i zadacha o diffuzionnoi neustoichivosti”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 28 yanvarya – 2 fevralya 2021 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 207, VINITI RAN, M., 2022, 77–90
M. O. Korpusov, E. A. Ovsyannikov, “Local solvability, blow-up, and Hölder regularity of solutions to some Cauchy problems for nonlinear plasma wave equations: I. Green formulas”, Comput. Math. Math. Phys., 62:10 (2022), 1609–1631