Abstract:
In this paper, we propose a system of nonlinear equations for the electric field potential and temperature, which describes the process of heating the semiconductor elements of an electrical board followed by thermal breakdown. For this system of equations, we prove the existence of a classical solution that is not extendable in time and also obtain sufficient conditions for the solution to blow up in finite time.
Keywords:
electric field potential, first boundary value problem for the heat equation, Green's function, solution blow-up, methods of nonlinear capacity and test functions.
Citation:
M. O. Korpusov, A. Yu. Perlov, A. V. Tymoshenko, R. S. Shafir, “On the Blow-Up of the Solution of a Nonlinear System of Equations of a Thermal-Electrical Model”, Mat. Zametki, 114:5 (2023), 759–772; Math. Notes, 114:5 (2023), 850–861
\Bibitem{KorPerTym23}
\by M.~O.~Korpusov, A.~Yu.~Perlov, A.~V.~Tymoshenko, R.~S.~Shafir
\paper On the Blow-Up of the Solution of a Nonlinear System of Equations of a Thermal-Electrical Model
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 5
\pages 759--772
\mathnet{http://mi.mathnet.ru/mzm13956}
\crossref{https://doi.org/10.4213/mzm13956}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4716484}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 5
\pages 850--861
\crossref{https://doi.org/10.1134/S0001434623110202}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85187640352}
Linking options:
https://www.mathnet.ru/eng/mzm13956
https://doi.org/10.4213/mzm13956
https://www.mathnet.ru/eng/mzm/v114/i5/p759
This publication is cited in the following 8 articles:
M. V. Artemeva, M. O. Korpusov, A. A. Panin, “On the solvability of the Cauchy problem for a thermal–electrical model”, Theoret. and Math. Phys., 222:2 (2025), 183–197
M. V. Artemeva, M. O. Korpusov, “On the Existence of a Nonextendable Solution of the Cauchy problem for a $(1+1)$-Dimensional Thermal-Electrical Model”, Math. Notes, 115:5 (2024), 653–663
M. V. Artemeva, M. O. Korpusov, “On the blow-up of the solution of a $(1+1)$-dimensional thermal–electrical model”, Theoret. and Math. Phys., 219:2 (2024), 748–760
M. V Artemeva, M. O Korpusov, “THE CAUCHY PROBLEM FOR AN NONLINEAR WAVE EQUATION”, Differencialʹnye uravneniâ, 60:10 (2024), 1299
M. V. Artemeva, M. O. Korpusov, “On the existence of a nonextendable solution of the Cauchy problem for a $(3+1)$-dimensional thermal–electrical model”, Theoret. and Math. Phys., 221:3 (2024), 2207–2218
A. V. Timoshenko, A. Yu. Perlov, R. S. Shafir, A. N. Silenok, “Estimation of Reliability of a Radio-Electronic System with Uncertain Data on the Failure Rate of Its Components as a Result of Destructive Temperature Effects”, Russ. Aeronaut., 67:3 (2024), 718
M. V. Artemeva, M. O. Korpusov, “The Cauchy Problem for a Nonlinear Wave
Equation”, Diff Equat, 60:10 (2024), 1369
M. O. Korpusov, A. Yu. Perlov, A. V. Tymoshenko, R. S. Shafir, “Global-in-time solvability of a nonlinear system of equations of a thermal–electrical model with quadratic nonlinearity”, Theoret. and Math. Phys., 217:2 (2023), 1743–1754