Processing math: 100%
Теория вероятностей и ее применения
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Теория вероятн. и ее примен.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Теория вероятностей и ее применения, 2011, том 56, выпуск 4, страницы 627–655
DOI: https://doi.org/10.4213/tvp4415
(Mi tvp4415)
 

Эта публикация цитируется в 25 научных статьях (всего в 25 статьях)

Принципы больших уклонений для траекторий случайных блужданий. I

А. А. Боровков, А. А. Могульский

Институт математики им. С. Л. Соболева СО РАН, г. Новосибирск
Список литературы:
Аннотация: Изучается случайное блуждание Sn:=ξ1++ξn,n=0,1,, в d-мерном евклидовом пространстве Rd, где S0=0,ξk — независимые одинаково распределенные случайные векторы, удовлетворяющие моментному условию Крамера. Для случайных ломаных, построенных по узловым точкам
(kn,1xSk),k=0,1,,n,
найдена при n логарифмическая асимптотика вероятностей больших уклонений в различных пространствах траекторий, когда xα0n,α0>0. Получены так называемые локальный и расширенный принципы больших уклонений (п.б.у.) (см. [1]), которые справедливы и в тех случаях, когда “обычный” принцип больших уклонений отсутствует.
Работа состоит из 3 частей. Часть I содержит два раздела. В разделе 1 приводятся основные понятия и некоторые сведения о п.б.у. в произвольных метрических пространствах. В разделе 2 формулируются “усиленные” версии «обычных» п.б.у. в области больших уклонений, полученных ранее в [2], [3] в пространстве непрерывных функций. Кроме того, в разделе 2 приводится п.б.у. для вероятностей попадания траекторий случайных блужданий в выпуклые множества. Он получен на основе неравенств в [4] и не содержит каких-либо моментных условий.
В разделе 3 части II рассмотрен пример, поясняющий необходимость расширения постановки задачи и самого понятия “принцип больших уклонений”. Введены новое расширенное пространство функций, метрика в нем и функционал (интеграл) уклонений более общего, чем ранее, вида, с помощью которых будет строиться “расширенный” п.б.у. В разделе 4 для траекторий одномерных случайных блужданий в пространстве D функций без разрывов второго рода приводятся и доказываются основные результаты работы: локальный и расширенный принципы больших уклонений. В разделе 5 все утверждения работы, сформулированные и доказанные в разделе 4, распространены на многомерный случай.
Раздел 6 части III содержит изложение результатов, аналогичных тем, что получены в разделе 4, но теперь в пространстве функций ограниченной вариации с более сильной, чем в D, метрикой. В разделе 7 получены так называемые условные принципы больших уклонений для траекторий одномерных случайных блужданий при локализованном положении блуждания в последний момент. В качестве следствия получена версия теоремы Санова о больших уклонениях эмпирических распределений.
Ключевые слова: условие Крамера, функция уклонений, случайное блуждание, функционал уклонений, интеграл уклонений, большие уклонения, принцип больших уклонений, локальный принцип больших уклонений, расширенный принцип больших уклонений, выпуклые множества, пространство функций без разрывов второго рода, пространство функций ограниченной вариации, интегро-локальные теоремы Гнеденко и Стоуна–Шеппа, теорема Санова, большие уклонения эмпирических распределений.
Поступила в редакцию: 02.08.2011
Англоязычная версия:
Theory of Probability and its Applications, 2011, Volume 56, Issue 4, Pages 538–561
DOI: https://doi.org/10.1137/S0040585X97985613
Реферативные базы данных:
Тип публикации: Статья
Образец цитирования: А. А. Боровков, А. А. Могульский, “Принципы больших уклонений для траекторий случайных блужданий. I”, Теория вероятн. и ее примен., 56:4 (2011), 627–655; Theory Probab. Appl., 56:4 (2011), 538–561
Цитирование в формате AMSBIB
\RBibitem{BorMog11}
\by А.~А.~Боровков, А.~А.~Могульский
\paper Принципы больших уклонений для траекторий случайных блужданий. I
\jour Теория вероятн. и ее примен.
\yr 2011
\vol 56
\issue 4
\pages 627--655
\mathnet{http://mi.mathnet.ru/tvp4415}
\crossref{https://doi.org/10.4213/tvp4415}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3137061}
\elib{https://elibrary.ru/item.asp?id=20732925}
\transl
\jour Theory Probab. Appl.
\yr 2011
\vol 56
\issue 4
\pages 538--561
\crossref{https://doi.org/10.1137/S0040585X97985613}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000311207400001}
\elib{https://elibrary.ru/item.asp?id=20483545}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84873656053}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/tvp4415
  • https://doi.org/10.4213/tvp4415
  • https://www.mathnet.ru/rus/tvp/v56/i4/p627
    Цикл статей
    Эта публикация цитируется в следующих 25 статьяx:
    1. Artem Logachov, Yuri Suhov, Nikita Vvedenskaya, Anatoly Yambartsev, “A large-deviation principle for birth–death processes with a linear rate of downward jumps”, J. Appl. Probab., 2023, 1  crossref
    2. А. А. Боровков, “Об условиях существования точных принципов больших уклонений”, Сиб. матем. журн., 63:1 (2022), 58–76  mathnet  crossref  mathscinet; A. A. Borovkov, “On the existence conditions for exact large deviation principles”, Siberian Math. J., 63:1 (2022), 48–64  crossref
    3. A. A. Mogul'skiǐ, “The Extended Large Deviation Principle for the Trajectories of a Compound Renewal Process”, Sib. Adv. Math., 32:1 (2022), 35  crossref
    4. А. А. Боровков, “О точных принципах больших уклонений для обобщенного процесса восстановления”, Теория вероятн. и ее примен., 66:2 (2021), 214–230  mathnet  crossref  zmath; A. A. Borovkov, “On exact large deviation principles for compound renewal processes”, Theory Probab. Appl., 66:2 (2021), 170–183  crossref
    5. А. А. Могульский, “Расширенный принцип больших уклонений для траекторий обобщенного процесса восстановления”, Матем. тр., 24:1 (2021), 142–174  mathnet  crossref
    6. Logachov A., Logachova O., Yambartsev A., “The Local Principle of Large Deviations For Compound Poisson Process With Catastrophes”, Braz. J. Probab. Stat., 35:2 (2021), 205–223  crossref  mathscinet  isi  scopus
    7. Vysotsky V., “Contraction Principle For Trajectories of Random Walks and Cramer'S Theorem For Kernel-Weighted Sums”, ALEA-Latin Am. J. Probab. Math. Stat., 18:2 (2021), 1103–1125  crossref  mathscinet  isi
    8. Ф. Х. Клебанер, А. В. Логачев, А. А. Могульский, “Расширенный принцип больших уклонений для траекторий процесса с независимыми приращениями на полуоси”, Пробл. передачи информ., 56:1 (2020), 63–79  mathnet  crossref; F. C. Klebaner, A. V. Logachov, A. A. Mogulskii, “Extended large deviation principle for trajectories of processes with independent and stationary increments on the half-line”, Problems Inform. Transmission, 56:1 (2020), 56–72  crossref  isi  elib
    9. Logachov A., Logachova O., Yambartsev A., “Local Large Deviation Principle For Wiener Process With Random Resetting”, Stoch. Dyn., 20:5 (2020), 2050032  crossref  mathscinet  isi
    10. А. А. Боровков, “Функциональные предельные теоремы для обобщенных процессов восстановления”, Сиб. матем. журн., 60:1 (2019), 37–54  mathnet  crossref  mathscinet; A. A. Borovkov, “Functional limit theorems for compound renewal processes”, Siberian Math. J., 60:1 (2019), 27–40  crossref  isi  elib
    11. F. C. Klebaner, A. A. Mogulskii, “Large deviations for processes on half-line: Random Walk and Compound Poisson Process”, Сиб. электрон. матем. изв., 16 (2019), 1–20  mathnet  crossref
    12. Н. Д. Введенская, А. В. Логачёв, Ю. М. Сухов, А. А. Ямбарцев, “Локальный принцип больших уклонений для неоднородных процессов роста и гибели”, Пробл. передачи информ., 54:3 (2018), 73–91  mathnet; N. D. Vvedenskaya, A. V. Logachov, Yu. M. Suhov, A. A. Yambartsev, “A local large deviation principle for inhomogeneous birth-death processes”, Problems Inform. Transmission, 54:3 (2018), 263–280  crossref  isi  elib
    13. А. А. Могульский, “Расширенный принцип больших уклонений для процесса с независимыми приращениями”, Сиб. матем. журн., 58:3 (2017), 660–672  mathnet  crossref  elib; A. A. Mogul'skiǐ, “The extended large deviation principle for a process with independent increments”, Siberian Math. J., 58:3 (2017), 515–524  crossref  isi  elib
    14. А. А. Могульский, “Принцип больших уклонений для обобщенного пуассоновского процесса”, Матем. тр., 19:2 (2016), 119–157  mathnet  crossref  elib; A. A. Mogul'skiǐ, “The large deviation principle for a compound Poisson process”, Siberian Adv. Math., 27:3 (2017), 160–186  crossref
    15. Bakhtin V. Sokal E., “The Kullback–Leibler Information Function for Infinite Measures”, Entropy, 18:12 (2016), 448  crossref  isi  elib  scopus
    16. Artem V. Logachov, “The local principle of large deviations for solutions of Itô stochastic equations with quick drift”, J Math Sci, 218:1 (2016), 28  crossref
    17. А. А. Боровков, А. А. Могульский, “Принципы больших уклонений для конечномерных распределений обобщенных процессов восстановления”, Сиб. матем. журн., 56:1 (2015), 36–64  mathnet  mathscinet  elib; A. A. Borovkov, A. A. Mogul'skiǐ, “Large deviation principles for the finite-dimensional distributions of compound renewal processes”, Siberian Math. J., 56:1 (2015), 28–53  crossref  isi  elib
    18. А. А. Боровков, А. А. Могульский, “Принципы больших уклонений для траектории обобщенных процессов восстановления. I”, Теория вероятн. и ее примен., 60:2 (2015), 227–247  mathnet  crossref  mathscinet  elib; A. A. Borovkov, A. A. Mogul'skii, “Large deviation principles for trajectories of compound renewal processes. I”, Theory Probab. Appl., 60:2 (2016), 207–221  crossref  isi
    19. А. А. Боровков, А. А. Могульский, “Неравенства и принципы больших уклонений для траекторий процессов с независимыми приращениями”, Сиб. матем. журн., 54:2 (2013), 286–297  mathnet  mathscinet; A. A. Borovkov, A. A. Mogul'skiǐ, “Inequalities and principles of large deviations for the trajectories of processes with independent increments”, Siberian Math. J., 54:2 (2013), 217–226  crossref  isi
    20. А. А. Могульский, “Об оценке сверху в принципе больших уклонений для сумм случайных векторов”, Матем. тр., 16:1 (2013), 121–140  mathnet  mathscinet  elib; A. A. Mogul'skiǐ, “On the upper bound in the large deviation principle for sums of random vectors”, Siberian Adv. Math., 24:2 (2014), 140–152  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Статистика просмотров:
    Страница аннотации:901
    PDF полного текста:285
    Список литературы:136
     
      Обратная связь:
    math-net2025_04@mi-ras.ru
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025