Аннотация:
Описаны классы в пространстве непрерывных на отрезке [0,π] функций f, исчезающих на концах
отрезка, для которых имеет место поточечная и равномерная аппроксимативная сходимость операторов типа Лагранжа
Sλ(f,x)=n∑k=0y(x,λ)y′(xk,λ)(x−xk,λ)f(xk,λ),
построенных по решениям y(x,λ) задачи Коши для уравнения
y″+(λ−qλ(x))y=0
при qλ∈Vρλ[0,π] (где Vρλ[0,π] – шар радиуса
ρλ=o(√λ/lnλ) в пространстве функций ограниченной вариации, исчезающих
в нуле, а y(xk,λ)=0). Предложен ряд модификаций этого оператора, позволяющих равномерно приближать на отрезке [0,π] произвольную непрерывную функцию.
Библиография: 40 названий.
Образец цитирования:
А. Ю. Трынин, “Обобщение теоремы отсчетов Уиттекера–Котельникова–Шеннона для непрерывных функций на
отрезке”, Матем. сб., 200:11 (2009), 61–108; A. Yu. Trynin, “A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a closed interval”, Sb. Math., 200:11 (2009), 1633–1679
А. Ю. Трынин, “Об одном методе решения смешанной краевой задачи для уравнения параболического типа с помощью операторов $\mathbb{AT}_{\lambda,j}$”, Изв. вузов. Матем., 2024, № 2, 59–80
V. N. Pasechnik, “Approximation of Continuous Functions by Classical Sincs and Values of Operators Cλ”, Comput. Math. and Math. Phys., 64:2 (2024), 206
A. Yu. Trynin, “On One Method for Solving a Mixed Boundary Value Problem for a Parabolic Type Equation Using Operators $\mathbb{A}{{\mathbb{T}}_{{\lambda ,j}}}$”, Russ Math., 68:2 (2024), 52
В. Н. Пасечник, “Приближение непрерывных функций с помощью классических синков и значений операторов Cλ”, Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, 64:2 (2024), 220
А. Ю. Трынин, “Об одном методе решения смешанной краевой задачи для уравнения гиперболического типа с помощью операторов $\mathbb{AT}_{\lambda,j}$”, Изв. РАН. Сер. матем., 87:6 (2023), 121–149; A. Yu. Trynin, “A method for solution of a mixed boundary value problem for a hyperbolic type equation using the operators $\mathbb{AT}_{\lambda,j}$”, Izv. Math., 87:6 (2023), 1227–1254
А. Ю. Трынин, “Об одном методе решения смешанной краевой задачи для уравнения параболического типа с помощью модифицированных операторов синк-приближений”, Ж. вычисл. матем. и матем. физ., 63:7 (2023), 1156–1176; A. Yu. Trynin, “On a method for solving a mixed boundary value problem for a parabolic equation using modified sinc-approximation operators”, Comput. Math. Math. Phys., 63:7 (2023), 1264–1284
A. Yu. Trynin, “A Summation Method for Trigonometric Fourier Series Based on Sinc-Approximations”, J Math Sci, 270:6 (2023), 842
A. Yu. Trynin, “Lagrange–Sturm–Liouville Processes”, J Math Sci, 261:3 (2022), 455
A. Yu. Trynin, “Method for Solving Mixed Boundary Value Problems for Hyperbolic Type Equations by Using Lagrange–Sturm–Liouville Operators”, J Math Sci, 267:3 (2022), 412
А. Ю. Трынин, “О сходимости обобщений синк-аппроксимаций на классе Привалова–Чантурия”, Сиб. журн. индустр. матем., 24:3 (2021), 122–137
A. Yu. Trynin, “On the Convergence of Generalizations of the Sinc Approximations on the Privalov–Chanturia Class”, J. Appl. Ind. Math., 15:3 (2021), 531
A. Yu. Trynin, “Sufficient Conditions for Convergence of Generalized Sinc-Approximations on Segment”, J Math Sci, 255:4 (2021), 513
А. Ю. Трынин, “О равномерном приближении интерполяционными многочленами Лагранжа по матрице узлов Якоби ${\mathcal L}_n^{(\alpha_n,\beta_n)}$ функций ограниченной вариации”, Изв. РАН. Сер. матем., 84:6 (2020), 197–222; A. Yu. Trynin, “On the uniform approximation of functions of bounded variation by Lagrange interpolation
polynomials with a matrix ${\mathcal L}_n^{(\alpha_n,\beta_n)}$ of Jacobi nodes”, Izv. Math., 84:6 (2020), 1224–1249
A. Yu. Trynin, “Error Estimate for Uniform Approximation by Lagrange–Sturm–Liouville Processes”, J Math Sci, 247:6 (2020), 939
А. Ю. Трынин, “Равномерная сходимость процессов Лагранжа–Штурма–Лиувилля на одном функциональном классе”, Уфимск. матем. журн., 10:2 (2018), 93–108; A. Yu. Trynin, “Uniform convergence of Lagrange–Sturm–Liouville processes on one functional class”, Ufa Math. J., 10:2 (2018), 93–108
А. Ю. Трынин, “Признак сходимости процессов Лагранжа–Штурма–Лиувилля в терминах одностороннего модуля изменения”, Изв. вузов. Матем., 2018, № 8, 61–74; A. Yu. Trynin, “A criterion of convergence of Lagrange–Sturm–Liouville processes in terms of one-sided modulus of variation”, Russian Math. (Iz. VUZ), 62:8 (2018), 51–63
А. Ю. Трынин, “Сходимость процессов Лагранжа–Штурма–Лиувилля для непрерывных функций ограниченной вариации”, Владикавк. матем. журн., 20:4 (2018), 76–91
А. Ю. Трынин, “Достаточное условие сходимости процессов Лагранжа–Штурма–Лиувилля в терминах одностороннего модуля непрерывности”, Ж. вычисл. матем. и матем. физ., 58:11 (2018), 1780–1793; A. Yu. Trynin, “Sufficient condition for convergence of Lagrange–Sturm–Liouville processes in terms of one-sided modulus of continuity”, Comput. Math. Math. Phys., 58:11 (2018), 1716–1727
А. Ю. Трынин, “Приближение непрерывных на отрезке функций с помощью линейных комбинаций синков”, Изв. вузов. Матем., 2016, № 3, 72–81; A. Yu. Trynin, “Approximation of continuous on a segment functions with the help of linear combinations of sincs”, Russian Math. (Iz. VUZ), 60:3 (2016), 63–71
А. Ю. Трынин, “Необходимые и достаточные условия равномерной на отрезке синк-аппроксимации функций ограниченной вариации”, Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 16:3 (2016), 288–298