Typesetting math: 100%
Алгебра и анализ
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Алгебра и анализ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Алгебра и анализ, 2008, том 20, выпуск 4, страницы 27–63 (Mi aa521)  

Эта публикация цитируется в 29 научных статьях (всего в 29 статьях)

Статьи

A2-доказательство структурных теорем для группы Шевалле типа F4

Н. А. Вавиловa, С. И. Николенкоb

a С.-Петербургский государственный университет, математико-механический факультет
b С.-Петербургское отделение Математического института им. В. А. Стеклова РАН
Список литературы:
Аннотация: Мы даём новое геометрическое доказательство стандартного описанияподгрупп групп Шевалле G=GF4,R) типа F4 над коммутативным кольцом R, нормализуемых элементарной подгруппой E(F4,R). Имеется два основных типа доказательств подобных результатов. Локализационные доказательства (Квиллен, Суслин, Бак) основаны на редукции размерности. Первое доказательство структурных теорем для исключительных групп на этом пути было получено в работах Абе, Судзуки, Таддеи и Васерштейна, однако оно опиралось на нетривиальные результаты, такие как теорема простоты Шевалле и редукция по радикалу. В дальнейшем первый автор, Степанов и Плоткин развили геометрический подход, разложение унипотентов, основанный на редукции по рангу. Этот подход совмещает методы Суслина, Уилсона и Голубчика, относившиеся к классическим группам, и методы теории представлений и алгебраической K-теории, введённые в структурную теорию групп Шевалле Мацумото и Штейном. Для векторных представлений классических групп доказательства, получающиеся на этом пути, совсем элементарны. С другой стороны, их обобщения на исключительные группы потребовали явного знания знаков структурных констант действия и уравнений на орбиту вектора старшего веса. Кроме того, они зависят от существования классических подгрупп очень большого ранга. В работе первого автора и Гавриловича для групп Шевалле типов Φ=E6,E7 было предложено еще одно геометрическое доказательство структурных теорем (the proof from the Book), совмещающее идеи разложения унипотентов и кратного коммутирования. В настоящей работе мы показываем, что ценой дополнительных усилий можно так модифицировать это доказательство, чтобы охватить случай Φ=F4. Попутно мы устанавливаем несколько новых фактов о группе Шевалле типа F4 и её 27-мерном представлении.
Ключевые слова: группа Шевалле, элементарная подгруппа, нормальные подгруппы, стандартное описание, минимальный модуль, параболические подгруппы, разложение унипотентов, корневой элемент, орбита вектора старшего веса, доказательство из Книги.
Поступила в редакцию: 25.10.2006
Англоязычная версия:
St. Petersburg Mathematical Journal, 2009, Volume 20, Issue 4, Pages 527–551
DOI: https://doi.org/10.1090/S1061-0022-09-01060-7
Реферативные базы данных:
Тип публикации: Статья
MSC: 20G15, 20G35
Образец цитирования: Н. А. Вавилов, С. И. Николенко, “A2-доказательство структурных теорем для группы Шевалле типа F4”, Алгебра и анализ, 20:4 (2008), 27–63; St. Petersburg Math. J., 20:4 (2009), 527–551
Цитирование в формате AMSBIB
\RBibitem{VavNik08}
\by Н.~А.~Вавилов, С.~И.~Николенко
\paper $\mathrm A_2$-доказательство структурных теорем для группы Шевалле типа~$\mathrm F_4$
\jour Алгебра и анализ
\yr 2008
\vol 20
\issue 4
\pages 27--63
\mathnet{http://mi.mathnet.ru/aa521}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2473743}
\zmath{https://zbmath.org/?q=an:1206.20055}
\elib{https://elibrary.ru/item.asp?id=11568876}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 4
\pages 527--551
\crossref{https://doi.org/10.1090/S1061-0022-09-01060-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267802600002}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/aa521
  • https://www.mathnet.ru/rus/aa/v20/i4/p27
  • Эта публикация цитируется в следующих 29 статьяx:
    1. N. A. Vavilov, Z. Zhang, “Relative Centralizers of Relative Subgroups”, J Math Sci, 264:1 (2022), 4  crossref
    2. N. A. Vavilov, Z. Zhang, “Relative centralisers of relative subgroups”, Вопросы теории представлений алгебр и групп. 35, Зап. научн. сем. ПОМИ, 492, ПОМИ, СПб., 2020, 10–24  mathnet
    3. Preusser R., “Sandwich Classification For O2N+1(R) and U2N+1(R, Delta) Revisited”, J. Group Theory, 21:4 (2018), 539–571  crossref  mathscinet  zmath  isi
    4. N. A. Vavilov, “Towards the reverse decomposition of unipotents”, Вопросы теории представлений алгебр и групп. 33, Зап. научн. сем. ПОМИ, 470, ПОМИ, СПб., 2018, 21–37  mathnet; J. Math. Sci. (N. Y.), 243:4 (2019), 515–526  crossref
    5. Raimund Preusser, “Sandwich classification for GL n (R), O2n (R) and U2n (R,Λ) revisited”, Journal of Group Theory, 21:1 (2018), 21  crossref
    6. A. Luzgarev, N. Vavilov, “Calculations in exceptional groups, an update”, Теория представлений, динамические системы, комбинаторные методы. XXIV, Зап. научн. сем. ПОМИ, 432, ПОМИ, СПб., 2015, 177–195  mathnet; J. Math. Sci. (N. Y.), 209:6 (2015), 922–934  crossref
    7. N. A. Vavilov, “Decomposition of unipotents for E6 and E7: 25 years after”, Вопросы теории представлений алгебр и групп. 27, Зап. научн. сем. ПОМИ, 430, ПОМИ, СПб., 2014, 32–52  mathnet  mathscinet; J. Math. Sci. (N. Y.), 219:3 (2016), 355–369  crossref
    8. Hazrat R. Vavilov N. Zhang Z., “Relative Commutator Calculus in Chevalley Groups”, J. Algebra, 385 (2013), 262–293  crossref  mathscinet  zmath  isi  elib
    9. Н. А. Вавилов, А. В. Щеголев, “Надгруппы subsystem subgroups в исключительных группах: уровни”, Вопросы теории представлений алгебр и групп. 23, Зап. научн. сем. ПОМИ, 400, ПОМИ, СПб., 2012, 70–126  mathnet  mathscinet; N. A. Vavilov, A. V. Shchegolev, “Overgroups of subsystem subgroups in exceptional groups: levels”, J. Math. Sci. (N. Y.), 192:2 (2013), 164–195  crossref
    10. Н. А. Вавилов, А. Ю. Лузгарев, “Группа Шевалле типа E7 в 56-мерном представлении”, Вопросы теории представлений алгебр и групп. 20, Зап. научн. сем. ПОМИ, 386, ПОМИ, СПб., 2011, 5–99  mathnet; N. A. Vavilov, A. Yu. Luzgarev, “Chevalley group of type E7 in the 56-dimensional representation”, J. Math. Sci. (N. Y.), 180:3 (2012), 197–251  crossref
    11. И. М. Певзнер, “Геометрия корневых элементов в группах типа E6”, Алгебра и анализ, 23:3 (2011), 261–309  mathnet  mathscinet  zmath  elib; I. M. Pevzner, “The geometry of root elements in groups of type E6”, St. Petersburg Math. J., 23:3 (2012), 603–635  crossref  isi  elib
    12. Н. А. Вавилов, “A3-доказательство структурных теорем для групп Шевалле типов E6 и E7. II. Основная лемма”, Алгебра и анализ, 23:6 (2011), 1–31  mathnet  mathscinet  elib; N. A. Vavilov, “An A3-proof of the structure theorems for Chevalley groups of types E6 and E7. II. The main lemma”, St. Petersburg Math. J., 23:6 (2012), 921–942  crossref  isi  elib
    13. Н. А. Вавилов, А. В. Степанов, “Линейные группы над общими кольцами I. Общие места”, Вопросы теории представлений алгебр и групп. 22, Зап. научн. сем. ПОМИ, 394, ПОМИ, СПб., 2011, 33–139  mathnet  mathscinet; N. A. Vavilov, A. V. Stepanov, “Linear groups over general rings. I. Generalities”, J. Math. Sci. (N. Y.), 188:5 (2013), 490–550  crossref
    14. Н. А. Вавилов, В. Г. Казакевич, “Еще несколько вариаций на тему разложения трансвекций”, Вопросы теории представлений алгебр и групп. 19, Зап. научн. сем. ПОМИ, 375, ПОМИ, СПб., 2010, 32–47  mathnet; N. A. Vavilov, V. G. Kazakevich, “More variations on decomposition of transvections”, J. Math. Sci. (N. Y.), 171:3 (2010), 322–330  crossref
    15. Н. А. Вавилов, “Строение изотропных редуктивных групп”, Тр. Ин-та матем., 18:1 (2010), 15–27  mathnet
    16. А. С. Ананьевский, Н. А. Вавилов, С. С. Синчук, “Об описании надгрупп E(m,R)E(n,R)”, Вопросы теории представлений алгебр и групп. 18, Зап. научн. сем. ПОМИ, 365, ПОМИ, СПб., 2009, 5–28  mathnet; A. S. Ananievskiy, N. A. Vavilov, S. S. Sinchuk, “Overgroups of E(m,R)E(n,R)”, J. Math. Sci. (N. Y.), 161:4 (2009), 461–473  crossref  elib
    17. Bak A., Hazrat R., Vavilov N., “Localization-completion strikes again: relative K1 is nilpotent by abelian”, J. Pure Appl. Algebra, 213:6 (2009), 1075–1085  crossref  mathscinet  zmath  isi  elib  scopus
    18. N. Vavilov, A. Luzgarev, A. Stepanov, “Calculations in exceptional groups over rings”, Теория представлений, динамические системы, комбинаторные методы. XVII, Зап. научн. сем. ПОМИ, 373, ПОМИ, СПб., 2009, 48–72  mathnet; J. Math. Sci. (N. Y.), 168:3 (2010), 334–348  crossref
    19. Hazrat R., Vavilov N., “Bak's work on the K-theory of rings”, J. K-Theory, 4:1 (2009), 1–65  crossref  mathscinet  zmath  isi  elib  scopus
    20. Н. А. Вавилов, “Нумерология квадратных уравнений”, Алгебра и анализ, 20:5 (2008), 9–40  mathnet  mathscinet  zmath; N. A. Vavilov, “Numerology of square equations”, St. Petersburg Math. J., 20:5 (2009), 687–707  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Статистика просмотров:
    Страница аннотации:845
    PDF полного текста:217
    Список литературы:105
    Первая страница:10
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025