Аннотация:
Работа посвящена доказательству на основе метода двойственной регуляризации так называемой регуляризованной теоремы Куна–Таккера в недифференциальной форме для параметрической задачи выпуклого программирования в гильбертовом пространстве в случае сильно выпуклого функционала цели. Эта теорема представляет собой утверждение в терминах минимизирующих последовательностей о возможности аппроксимации решения задачи выпуклого программирования точками минимума ее регулярной (с равным единице множителем Лагранжа при функционале цели) функции Лагранжа без каких-либо предположений о регулярности самой оптимизационной задачи. Аппроксимирующие решение точки конструктивно указываются и являются устойчивыми по отношению к ошибкам исходных данных, что делает возможным эффективное применение регуляризованной теоремы Куна–Таккера для решения широкого класса некорректных задач оптимизации, оптимального управления, обратных задач.
Устанавливается связь этого утверждения с дифференциальными свойствами функции значений (S-функции). В качестве частного случая теорема содержит классический вариант теоремы Куна–Таккера в недифференциальной форме. Рассматривается вариант регуляризованной теоремы Куна–Таккера в случае выпуклого функционала цели. Библ. 17.
Ключевые слова:
выпуклое программирование, принцип Лагранжа, теорема Куна–Таккера в недифференциальной форме, параметрическая задача, минимизирующая последовательность, двойственность, регуляризация, метод возмущений.
V. I. Sumin, M. I. Sumin, “On Regularization of Classical Optimality Conditions
in Convex Optimization Problems for Volterra-Type Systems with Operator
Constraints”, Diff Equat, 60:2 (2024), 227
М. И. Сумин, “Метод возмущений и регуляризация правила множителей Лагранжа в выпуклых задачах на условный экстремум”, Тр. ИММ УрО РАН, 30, № 2, 2024, 203–221; M. I. Sumin, “The perturbation method and a regularization of the Lagrange multiplier rule in convex problems for constrained extremum”, Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S194–S211
V. I. Sumin, M. I. Sumin, “On regularization of the classical optimality conditions in the convex optimization problems for Volterra-type systems with operator constraints”, Differencialʹnye uravneniâ, 60:2 (2024), 237
В. И. Сумин, М. И. Сумин, “Регуляризация классических условий оптимальности в задачах оптимизации линейных распределенных систем вольтеррова типа с поточечными фазовыми ограничениями”, Вестник российских университетов. Математика, 29:148 (2024), 455–484
M. I. Sumin, “Perturbation Method and Regularization of the Lagrange Principle in Nonlinear Constrained Optimization Problems”, Comput. Math. and Math. Phys., 64:12 (2024), 2823
В. И. Сумин, М. И. Сумин, “Регуляризация классических условий оптимальности в задачах оптимизации линейных систем вольтеррова типа с функциональными ограничениями”, Вестник российских университетов. Математика, 28:143 (2023), 298–325
М. И. Сумин, “О роли множителей Лагранжа и двойственности в некорректных задачах на условный экстремум. К 60-летию метода регуляризации Тихонова”, Вестник российских университетов. Математика, 28:144 (2023), 414–435
М. И. Сумин, “О некорректных задачах, экстремалях функционала Тихонова и регуляризованных принципах Лагранжа”, Вестник российских университетов. Математика, 27:137 (2022), 58–79
М. И. Сумин, “О регуляризации классических условий оптимальности в выпуклом оптимальном управлении”, Материалы Воронежской международной зимней математической школы «Современные методы теории функций и смежные проблемы», Воронеж, 28 января – 2 февраля 2021 г. Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 207, ВИНИТИ РАН, М., 2022, 120–143
М. И. Сумин, “Принцип Лагранжа и принцип максимума Понтрягина в некорректных задачах оптимального управления”, Материалы Воронежской международной весенней математической школы «Современные методы теории краевых задач. Понтрягинские чтения–XXXII», Воронеж, 3–9 мая 2021 г. Часть 1, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 208, ВИНИТИ РАН, М., 2022, 63–78
М. И. Сумин, “Метод возмущений, субдифференциалы негладкого анализа и регуляризация правила множителей Лагранжа в нелинейном оптимальном управлении”, Тр. ИММ УрО РАН, 28, № 3, 2022, 202–221
В. И. Сумин, М. И. Сумин, “О регуляризации принципа Лагранжа в задачах оптимизации линейных распределенных систем вольтеррова типа с операторными ограничениями”, Изв. ИМИ УдГУ, 59 (2022), 85–113
М. И. Сумин, “О регуляризации недифференциальной теоремы Куна–Таккера в нелинейной задаче на условный экстремум”, Вестник российских университетов. Математика, 27:140 (2022), 351–374
В. И. Сумин, М. И. Сумин, “Регуляризация классических условий оптимальности в задачах оптимального управления линейными распределенными системами вольтеррова типа”, Ж. вычисл. матем. и матем. физ., 62:1 (2022), 45–70; V. I. Sumin, M. I. Sumin, “Regularization of the classical optimality conditions in optimal control problems for linear distributed systems of Volterra type”, Comput. Math. Math. Phys., 62:1 (2022), 42–65
V. I. Sumin, M. I. Sumin, “On the Iterative Regularization of the Lagrange Principle in Convex Optimal Control Problems for Distributed Systems of the Volterra Type with Operator Constraints”, Diff Equat, 58:6 (2022), 791
М. И. Сумин, “Принцип Лагранжа и его регуляризация как теоретическая основа устойчивого решения задач оптимального управления и обратных задач”, Вестник российских университетов. Математика, 26:134 (2021), 151–171
В. И. Сумин, М. И. Сумин, “Регуляризованные классические условия оптимальности в итерационной форме для выпуклых задач оптимизации распределенных систем вольтеррова типа”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 31:2 (2021), 265–284
М. И. Сумин, “О регуляризации классических условий оптимальности в выпуклых задачах оптимального управления”, Тр. ИММ УрО РАН, 26, № 2, 2020, 252–269
М. И. Сумин, “О регуляризации принципа Лагранжа и построении обобщенных минимизирующих последовательностей в выпуклых задачах условной оптимизации”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 30:3 (2020), 410–428
Ф. А. Кутерин, “К вопросу о регуляризации классических условий оптимальности в выпуклой задаче оптимального управления c фазовыми ограничениями”, Вестник российских университетов. Математика, 25:131 (2020), 263–273