Loading [MathJax]/jax/output/CommonHTML/jax.js
Журнал вычислительной математики и математической физики
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Ж. вычисл. матем. и матем. физ.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Журнал вычислительной математики и математической физики, 2022, том 62, номер 1, страницы 45–70
DOI: https://doi.org/10.31857/S0044466921110144
(Mi zvmmf11344)
 

Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)

Оптимальное управление

Регуляризация классических условий оптимальности в задачах оптимального управления линейными распределенными системами вольтеррова типа

В. И. Суминab, М. И. Суминab

a 603950 Нижний Новгород, пр-т Гагарина, 23, ННГУ им. Н.И. Лобачевского, Россия
b 392000 Тамбов, ул. Интернациональная, 33, ТГУ им. Г.Р. Державина, Россия
Аннотация: Рассматривается регуляризация классических условий оптимальности (КУО) – принципа Лагранжа и принципа максимума Понтрягина – в выпуклой задаче оптимального управления с функциональными ограничениями типа равенства и неравенства. Управляемая система задается линейным функционально-операторным уравнением II рода общего вида в пространстве Lm2, основной оператор правой части уравнения предполагается квазинильпотентным. Целевой минимизируемый функционал задачи является сильно выпуклым. Получение регуляризованных КУО основано на использовании метода двойственной регуляризации. Основное предназначение регуляризованных принципа Лагранжа и принципа максимума Понтрягина – устойчивое генерирование минимизирующих приближенных решений в смысле Дж. Варги. Регуляризованные КУО: 1) формулируются как теоремы существования в исходной задаче минимизирующих приближенных решений с одновременным конструктивным представлением этих решений; 2) выражаются в терминах регулярных классических функций Лагранжа и Гамильтона–Понтрягина; 3) являются секвенциальными обобщениями классических аналогов – своих предельных вариантов, сохраняя общую структуру последних; 4) “преодолевают” свойства некорректности КУО и дают регуляризирующие алгоритмы для решения оптимизационных задач. В качестве приложения результатов для задачи оптимального управления линейным функционально-операторным уравнением II рода общего вида рассматриваются два примера конкретных задач оптимального управления, связанных с системой уравнений с запаздыванием и с интегродифференциальным уравнением типа уравнения переноса.
Библ. 35.
Ключевые слова: выпуклое оптимальное управление, распределенная система, функционально-операторное уравнение вольтеррова типа, некорректность, регуляризация, двойственность, минимизирующее приближенное решение, регуляризирующий оператор, принцип Лагранжа, принцип максимума Понтрягина.
Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 20-01-00199_a
Работа выполнена при финансовой поддержке РФФИ (код проекта 20-01-00199_a).
Поступила в редакцию: 12.12.2020
Исправленный вариант: 21.03.2021
Принята в печать: 07.07.2021
Англоязычная версия:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 1, Pages 42–65
DOI: https://doi.org/10.1134/S0965542521110142
Реферативные базы данных:
Тип публикации: Статья
УДК: 519.626
Образец цитирования: В. И. Сумин, М. И. Сумин, “Регуляризация классических условий оптимальности в задачах оптимального управления линейными распределенными системами вольтеррова типа”, Ж. вычисл. матем. и матем. физ., 62:1 (2022), 45–70; Comput. Math. Math. Phys., 62:1 (2022), 42–65
Цитирование в формате AMSBIB
\RBibitem{SumSum22}
\by В.~И.~Сумин, М.~И.~Сумин
\paper Регуляризация классических условий оптимальности в задачах оптимального управления линейными распределенными системами вольтеррова типа
\jour Ж. вычисл. матем. и матем. физ.
\yr 2022
\vol 62
\issue 1
\pages 45--70
\mathnet{http://mi.mathnet.ru/zvmmf11344}
\crossref{https://doi.org/10.31857/S0044466921110144}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4384045}
\elib{https://elibrary.ru/item.asp?id=47423717}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 1
\pages 42--65
\crossref{https://doi.org/10.1134/S0965542521110142}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000755152200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124968865}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/zvmmf11344
  • https://www.mathnet.ru/rus/zvmmf/v62/i1/p45
  • Эта публикация цитируется в следующих 4 статьяx:
    1. В. И. Сумин, М. И. Сумин, “Регуляризация классических условий оптимальности
      в задачах оптимизации линейных распределенных систем вольтеррова типа с поточечными фазовыми ограничениями”, Вестник российских университетов. Математика, 29:148 (2024), 455–484  mathnet  crossref
    2. В. И. Сумин, М. И. Сумин, “Регуляризация классических условий оптимальности в задачах оптимизации линейных систем вольтеррова типа с функциональными ограничениями”, Вестник российских университетов. Математика, 28:143 (2023), 298–325  mathnet  crossref
    3. В. И. Сумин, М. И. Сумин, “О регуляризации принципа Лагранжа в задачах оптимизации линейных распределенных систем вольтеррова типа с операторными ограничениями”, Изв. ИМИ УдГУ, 59 (2022), 85–113  mathnet  crossref
    4. V. I. Sumin, M. I. Sumin, “On the Iterative Regularization of the Lagrange Principle in Convex Optimal Control Problems for Distributed Systems of the Volterra Type with Operator Constraints”, Diff Equat, 58:6 (2022), 791  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Статистика просмотров:
    Страница аннотации:267
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025