Аннотация:
Рассматривается регуляризация классических условий оптимальности (КУО) – принципа Лагранжа и принципа максимума Понтрягина – в выпуклой задаче оптимального управления с функциональными ограничениями типа равенства и неравенства. Управляемая система задается линейным функционально-операторным уравнением II рода общего вида в пространстве Lm2, основной оператор правой части уравнения предполагается квазинильпотентным. Целевой минимизируемый функционал задачи является сильно выпуклым. Получение регуляризованных КУО основано на использовании метода двойственной регуляризации. Основное предназначение регуляризованных принципа Лагранжа и принципа максимума Понтрягина – устойчивое генерирование минимизирующих приближенных решений в смысле Дж. Варги. Регуляризованные КУО: 1) формулируются как теоремы существования в исходной задаче минимизирующих приближенных решений с одновременным конструктивным представлением этих решений; 2) выражаются в терминах регулярных классических функций Лагранжа и Гамильтона–Понтрягина; 3) являются секвенциальными обобщениями классических аналогов – своих предельных вариантов, сохраняя общую структуру последних; 4) “преодолевают” свойства некорректности КУО и дают регуляризирующие алгоритмы для решения оптимизационных задач. В качестве приложения результатов для задачи оптимального управления линейным функционально-операторным уравнением II рода общего вида рассматриваются два примера конкретных задач оптимального управления, связанных с системой уравнений с запаздыванием и с интегродифференциальным уравнением типа уравнения переноса.
Библ. 35.
Ключевые слова:
выпуклое оптимальное управление, распределенная система, функционально-операторное уравнение вольтеррова типа, некорректность, регуляризация, двойственность, минимизирующее приближенное решение, регуляризирующий оператор, принцип Лагранжа, принцип максимума Понтрягина.
Образец цитирования:
В. И. Сумин, М. И. Сумин, “Регуляризация классических условий оптимальности в задачах оптимального управления линейными распределенными системами вольтеррова типа”, Ж. вычисл. матем. и матем. физ., 62:1 (2022), 45–70; Comput. Math. Math. Phys., 62:1 (2022), 42–65
\RBibitem{SumSum22}
\by В.~И.~Сумин, М.~И.~Сумин
\paper Регуляризация классических условий оптимальности в задачах оптимального управления линейными распределенными системами вольтеррова типа
\jour Ж. вычисл. матем. и матем. физ.
\yr 2022
\vol 62
\issue 1
\pages 45--70
\mathnet{http://mi.mathnet.ru/zvmmf11344}
\crossref{https://doi.org/10.31857/S0044466921110144}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4384045}
\elib{https://elibrary.ru/item.asp?id=47423717}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 1
\pages 42--65
\crossref{https://doi.org/10.1134/S0965542521110142}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000755152200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124968865}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/zvmmf11344
https://www.mathnet.ru/rus/zvmmf/v62/i1/p45
Эта публикация цитируется в следующих 4 статьяx:
В. И. Сумин, М. И. Сумин, “Регуляризация классических условий оптимальности в задачах оптимизации линейных распределенных систем вольтеррова типа с поточечными фазовыми ограничениями”, Вестник российских университетов. Математика, 29:148 (2024), 455–484
В. И. Сумин, М. И. Сумин, “Регуляризация классических условий оптимальности в задачах оптимизации линейных систем вольтеррова типа с функциональными ограничениями”, Вестник российских университетов. Математика, 28:143 (2023), 298–325
В. И. Сумин, М. И. Сумин, “О регуляризации принципа Лагранжа в задачах оптимизации линейных распределенных систем вольтеррова типа с операторными ограничениями”, Изв. ИМИ УдГУ, 59 (2022), 85–113
V. I. Sumin, M. I. Sumin, “On the Iterative Regularization of the Lagrange Principle in Convex Optimal Control Problems for Distributed Systems of the Volterra Type with Operator Constraints”, Diff Equat, 58:6 (2022), 791