Аннотация:
В работе дается обзор результатов, полученных за последние 20–30 лет в качественной теории приближения функций голоморфными, гармоническими и полианалитическими функциями (и, в частности, соответствующими многочленами) в нормах пространств $C^m$ типа Уитни на компактных подмножествах евклидовых пространств.
Библиография: 120 названий.
Ключевые слова:$C^m$-аппроксимация голоморфными, гармоническими и полианалитическими функциями; $C^m$-аналитическая и $C^m$-гармоническая емкость; $s$-мерный обхват по Хаусдорфу; локализационный оператор Витушкина; задача Дирихле; неванлинновские области.
Образец цитирования:
М. Я. Мазалов, П. В. Парамонов, К. Ю. Федоровский, “Условия $C^m$-приближаемости функций решениями эллиптических уравнений”, УМН, 67:6(408) (2012), 53–100; Russian Math. Surveys, 67:6 (2012), 1023–1068
Sorin G. Gal, Irene Sabadini, “Density of Complex and Quaternionic Polyanalytic Polynomials in Polyanalytic Fock Spaces”, Complex Anal. Oper. Theory, 18:1 (2024)
Astamur Bagapsh, Konstantin Fedorovskiy, Maksim Mazalov, “On Dirichlet problem and uniform approximation by solutions of second-order elliptic systems in R2”, Journal of Mathematical Analysis and Applications, 531:1 (2024), 127896
М. Я. Мазалов, П. В. Парамонов, К. Ю. Федоровский, “Критерии $C^m$-приближаемости функций решениями однородных эллиптических уравнений второго порядка на компактах в $\mathbb{R}^N$ и связанные с ними емкости”, УМН, 79:5(479) (2024), 101–177; M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Criteria for $C^m$-approximability of functions by solutions of homogeneous second-order elliptic equations on compact subsets of $\mathbb{R}^N$ and related capacities”, Russian Math. Surveys, 79:5 (2024), 847–917
П. В. Парамонов, К. Ю. Федоровский, “Явный вид фундаментальных решений некоторых эллиптических уравнений и связанные с ними $B$- и $C$-емкости”, Матем. сб., 214:4 (2023), 114–131; P. V. Paramonov, K. Yu. Fedorovskiy, “Explicit form of fundamental solutions to certain elliptic equations and associated $B$- and $C$-capacities”, Sb. Math., 214:4 (2023), 550–566
K. Fedorovskiy, “Uniform Approximation by Polynomial Solutions of Elliptic Systems on Boundaries of Carathéodory Domains in $\boldsymbol{\mathbb{R}}^{\mathbf{2}}$”, Lobachevskii J Math, 44:4 (2023), 1299
Gal S.G., Sabadini I., “Approximation By Convolution Polyanalytic Operators in the Complex and Quaternionic Compact Unit Balls”, Comput. Methods Funct. Theory, 2022
М. Я. Мазалов, “Равномерное приближение функций решениями однородных сильно эллиптических уравнений второго порядка на компактах в $\mathbb{R}^2$”, Изв. РАН. Сер. матем., 85:3 (2021), 89–126; M. Ya. Mazalov, “Uniform approximation of functions
by solutions of second order homogeneous strongly elliptic equations on compact sets in ${\mathbb{R}}^2$”, Izv. Math., 85:3 (2021), 421–456
П. В. Парамонов, “Критерии $C^1$-приближаемости функций решениями однородных эллиптических уравнений второго порядка на компактах в $\mathbb{R}^N$, $N \geqslant 3$”, Изв. РАН. Сер. матем., 85:3 (2021), 154–177; P. V. Paramonov, “Criteria for $C^1$-approximability of functions on compact sets in ${\mathbb{R}}^N$, $N\geqslant 3$, by solutions of second-order homogeneous elliptic equations”, Izv. Math., 85:3 (2021), 483–505
П. В. Парамонов, “Равномерные аппроксимации функций решениями сильно эллиптических уравнений второго порядка на компактах в $\mathbb R^2$”, Матем. сб., 212:12 (2021), 77–94; P. V. Paramonov, “Uniform approximation of functions by solutions of strongly elliptic equations of second order on compact subsets of $\mathbb R^2$”, Sb. Math., 212:12 (2021), 1730–1745
Zoubeir H., Kabbaj S., “On the Representation and the Uniform Polynomial Approximation of Polyanalytic Functions of Gevrey Type on the Unit Disk”, Iran. J. Math. Sci. Inform., 16:2 (2021), 89–115
М. Я. Мазалов, “О приближениях полианалитическими функциями в пространствах Гельдера”, Алгебра и анализ, 33:5 (2021), 125–152; M. Ya. Mazalov, “Approximation by polyanalytic functions in Hölder spaces”, St. Petersburg Math. J., 33:5 (2022), 829–848
П. В. Парамонов, К. Ю. Федоровский, “О $C^m$-отражении гармонических функций и $C^m$-приближаемости гармоническими полиномами”, Матем. сб., 211:8 (2020), 102–113; P. V. Paramonov, K. Yu. Fedorovskiy, “On $C^m$-reflection of harmonic functions and $C^m$-approximation by harmonic polynomials”, Sb. Math., 211:8 (2020), 1159–1170
М. Я. Мазалов, “Критерий равномерной приближаемости индивидуальных функций решениями однородных эллиптических уравнений второго порядка с постоянными комплексными коэффициентами”, Матем. сб., 211:9 (2020), 60–104; M. Ya. Mazalov, “A criterion for uniform approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients”, Sb. Math., 211:9 (2020), 1267–1309
Belov Yu. Borichev A. Fedorovskiy K., “Nevanlinna Domains With Large Boundaries”, J. Funct. Anal., 277:8 (2019), 2617–2643
Paramonov P.V., Tolsa X., “on C-1-Approximability of Functions By Solutions of Second Order Elliptic Equations on Plane Compact Sets and C-Analytic Capacity”, Anal. Math. Phys., 9:3 (2019), 1133–1161
Ю. С. Белов, К. Ю. Федоровский, “Модельные пространства, содержащие однолистные функции”, УМН, 73:1(439) (2018), 181–182; Yu. S. Belov, K. Yu. Fedorovskiy, “Model spaces containing univalent functions”, Russian Math. Surveys, 73:1 (2018), 172–174
Fedorovskiy K.Yu., “Two Problems on Approximation By Solutions of Elliptic Systems on Compact Sets in the Plane”, Complex Var. Elliptic Equ., 63:7-8, SI (2018), 961–975
М. Я. Мазалов, “О бианалитических емкостях”, Матем. заметки, 103:4 (2018), 635–640; M. Ya. Mazalov, “On Bianalytic Capacities”, Math. Notes, 103:4 (2018), 672–677
П. В. Парамонов, “Критерии индивидуальной $C^m$-приближаемости функций решениями однородных эллиптических уравнений второго порядка на компактах в $\mathbb R^N$”, Матем. сб., 209:6 (2018), 83–97; P. V. Paramonov, “Criteria for the individual $C^m$-approximability of functions on compact subsets of $\mathbb R^N$ by solutions of second-order homogeneous elliptic equations”, Sb. Math., 209:6 (2018), 857–870