Аннотация:
We classify Fano threefolds with only terminal singularities whose canonical class is Cartier and divisible by 2 with the additional assumption that the G-invariant part of the Weil divisor class group is of rank 1 with respect to an action of some group G. In particular, we find a lot of examples of Fano 3-folds with “many” symmetries.
The work was partially supported by RFBR grants Nos. 11-01-00336-a and 11-01-92613-KO_a, Leading Scientific Schools, No. 4713.2010.1, and AG Laboratory HSE, RF government grant ag. 11.G34.31.0023.
Реферативные базы данных:
Тип публикации:
Статья
Язык публикации: английский
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/advg1
Эта публикация цитируется в следующих 31 статьяx:
Alexander Kuznetsov, Yuri Prokhorov, “Rationality over non-closed fields of Fano threefolds with higher geometric Picard rank”, J. Inst. Math. Jussieu, 23:1 (2024), 207–247
A. G. Kuznetsov, Yu. G. Prokhorov, “On higher-dimensional del Pezzo varieties”, Изв. РАН. Сер. матем., 87:3 (2023), 75–148; A. G. Kuznetsov, Yu. G. Prokhorov, “On higher-dimensional del Pezzo varieties”, Izv. Math., 87:3 (2023), 488–561
Yuri Prokhorov, “Embeddings of the symmetric groups to the space Cremona group”, Springer Proc. Math. Statist., 409 (2023), 749–762
А. А. Авилов, “Бирациональная жесткость трехмерных многообразий дель Пеццо степени 2”, Матем. сб., 214:6 (2023), 3–40; A. A. Avilov, “Birational rigidity of GG-del Pezzo threefolds of degree 22”, Sb. Math., 214:6 (2023), 757–792
Ivan Cheltsov, Adrien Dubouloz, Takashi Kishimoto, “Toric G-solid Fano threefolds”, Sel. Math. New Ser., 29:2 (2023)
Fei Xie, “Nodal quintic del Pezzo threefolds and their derived categories”, Math. Z., 304:3 (2023)
Yuri Prokhorov, “Rationality of Fano threefolds with terminal Gorenstein singularities, II”, Rend. Circ. Mat. Palermo (2), 72 (2023), 1797–1821
Ivan Cheltsov, “Kummer quartic double solids”, Rend. Circ. Mat. Palermo, II. Ser, 72:3 (2023), 1993
Jérémy Blanc, Ivan Cheltsov, Alexander Duncan, Yuri Prokhorov, “Finite quasisimple groups acting on rationally connected threefolds”, Math. Proc. Camb. Philos. Soc., 174:3 (2023), 531–568
Marta Pieropan, “On rationally connected varieties over C1 fields
of characteristic 0”, Alg. Number Th., 16:8 (2022), 1811
Arman Sarikyan, “Toric G-Fano threefolds”, Int. J. Math., 33:05 (2022)
Ю. Г. Прохоров, “Эквивариантная программа минимальных моделей”, УМН, 76:3 (2021), 93–182; Yu. G. Prokhorov, “Equivariant minimal model program”, Russian Math. Surveys, 76:3 (2021), 461–542
А. А. Кузнецова, “Конечные 3-подгруппы в группе Кремоны ранга 3”, Матем. заметки, 108:5 (2020), 725–749; A. A. Kuznetsova, “Finite 3-Subgroups in the Cremona Group of Rank 3”, Math. Notes, 108:5 (2020), 697–715
Ivan Cheltsov, Alexander Kuznetsov, Konstantin Shramov, “Coble fourfold, S6-invariant quartic threefolds, and Wiman–Edge sextics”, Algebra Number Theory, 14:1 (2020), 213–274
А. А. Авилов, “Бирегулярная и бирациональная геометрия двойных накрытий проективного пространства с ветвлением в квартике с 15 обыкновенными двойными точками”, Изв. РАН. Сер. матем., 83:3 (2019), 5–14; A. Avilov, “Biregular and birational geometry of quartic double solids with 15 nodes”, Izv. Math., 83:3 (2019), 415–423
Ivan Cheltsov, Victor Przyjalkowski, Constantin Shramov, “Burkhardt Quartic, Barth Sextic, and the Icosahedron”, Int. Math. Res. Not. IMRN, 2019:12 (2019), 3683–3703
Ю. Г. Прохоров, “Рациональность трехмерных многообразий Фано с терминальными горенштейновыми особенностями. I”, Труды МИАН, 307 (2019), 230–253; Yuri G. Prokhorov, “Rationality of Fano Threefolds with Terminal Gorenstein Singularities. I”, Proc. Steklov Inst. Math., 307 (2019), 210–231
Ivan Cheltsov, Victor Przyjalkowski, Constantin Shramov, “Which quartic double solids are rational?”, J. Algebraic Geom., 28:2 (2019), 201–243
Artem Avilov, “Automorphisms of singular three-dimensional cubic hypersurfaces”, European Journal of Mathematics, 4:3 (2018), 761
Yuri Prokhorov, Constantin Shramov, “p-subgroups in the space Cremona group”, Math. Nachr., 291:8 (2018), 1374–1389