Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 3, Pages 415–423
DOI: https://doi.org/10.1070/IM8837
(Mi im8837)
 

This article is cited in 5 scientific papers (total in 5 papers)

Biregular and birational geometry of quartic double solids with 15 nodes

A. Avilov

National Research University Higher School of Economics, Moscow
References:
Abstract: Three-dimensional del Pezzo varieties of degree 22 are double covers of P3 branched in a quartic. We prove that if a del Pezzo variety of degree 2 has exactly 15 nodes, then the corresponding quartic is a hyperplane section of the Igusa quartic or, equivalently, all such del Pezzo varieties are members of a particular linear system on the Coble fourfold. Their automorphism groups are induced from the automorphism group of the Coble fourfold. We also classify all birationally rigid varieties of this type.
Keywords: del Pezzo varieties, automorphism groups, birational rigidity.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 5-100
Contest «Young Russian Mathematics»
Partially supported by the Russian Academic Excellence Project ‘5-100’ and by a ‘Young Russian Mathematics’ award.
Received: 02.07.2018
Revised: 27.12.2018
Bibliographic databases:
Document Type: Article
UDC: 512.776
MSC: 14J45, 14M20, 14N25
Language: English
Original paper language: Russian
Citation: A. Avilov, “Biregular and birational geometry of quartic double solids with 15 nodes”, Izv. Math., 83:3 (2019), 415–423
Citation in format AMSBIB
\Bibitem{Avi19}
\by A.~Avilov
\paper Biregular and birational geometry of quartic double solids with 15 nodes
\jour Izv. Math.
\yr 2019
\vol 83
\issue 3
\pages 415--423
\mathnet{http://mi.mathnet.ru/eng/im8837}
\crossref{https://doi.org/10.1070/IM8837}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3954304}
\zmath{https://zbmath.org/?q=an:1419.14064}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..415A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000472863800001}
\elib{https://elibrary.ru/item.asp?id=37652141}
Linking options:
  • https://www.mathnet.ru/eng/im8837
  • https://doi.org/10.1070/IM8837
  • https://www.mathnet.ru/eng/im/v83/i3/p5
  • This publication is cited in the following 5 articles:
    1. A. A. Avilov, “Birational rigidity of $G$-del Pezzo threefolds of degree $2$”, Sb. Math., 214:6 (2023), 757–792  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. I. Cheltsov, “Kummer quartic double solids”, Rend. Circ. Mat. Palermo, II. Ser., 72:3 (2023), 1993–2023  crossref  mathscinet
    3. A. V. Pukhlikov, “Effective results in the theory of birational rigidity”, Russian Math. Surveys, 77:2 (2022), 301–354  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. Yu. G. Prokhorov, “Equivariant minimal model program”, Russian Math. Surveys, 76:3 (2021), 461–542  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. A. Avilov, “Forms of the Segre Cubic”, Math. Notes, 107:1 (2020), 3–9  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:489
    Russian version PDF:54
    English version PDF:36
    References:53
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025