Алгебра и анализ
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Алгебра и анализ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Алгебра и анализ, 2005, том 17, выпуск 5, страницы 69–90 (Mi aa706)  

Эта публикация цитируется в 37 научных статьях (всего в 37 статьях)

Статьи

Пороговые аппроксимации резольвенты факторизованного самосопряженного семейства с учетом корректора

М. Ш. Бирман, Т. А. Суслина

С.-Петербургский государственный университет, физический факультет
Список литературы:
Аннотация: В гильбертовом пространстве рассматривается семейство операторов, допускающее факторизацию вида A(t)=X(t)X(t)A(t)=X(t)X(t), где X(t)=X0+tX1X(t)=X0+tX1, tRtR. Предполагается, что подпространство N=KerA(0) конечномерно. Для резольвенты (A(t)+ε2I)1 на фиксированном промежутке |t|t0 получена аппроксимация по операторной норме при малом ε. Эта аппроксимация учитывает так называемый “корректор”; остаток имеет оценку O(1). Результаты нацелены на применения к задачам гомогенизации периодических дифференциальных операторов в пределе малого периода. Работа развивает и усиливает результаты гл. 1 статьи [BSu].
Ключевые слова: пороговые аппроксимации, гомогенизация, корректор.
Поступила в редакцию: 11.04.2005
Англоязычная версия:
St. Petersburg Mathematical Journal, 2006, Volume 17, Issue 5, Pages 745–762
DOI: https://doi.org/10.1090/S1061-0022-06-00927-7
Реферативные базы данных:
Тип публикации: Статья
Образец цитирования: М. Ш. Бирман, Т. А. Суслина, “Пороговые аппроксимации резольвенты факторизованного самосопряженного семейства с учетом корректора”, Алгебра и анализ, 17:5 (2005), 69–90; St. Petersburg Math. J., 17:5 (2006), 745–762
Цитирование в формате AMSBIB
\RBibitem{BirSus05}
\by М.~Ш.~Бирман, Т.~А.~Суслина
\paper Пороговые аппроксимации резольвенты факторизованного самосопряженного семейства с~учетом корректора
\jour Алгебра и анализ
\yr 2005
\vol 17
\issue 5
\pages 69--90
\mathnet{http://mi.mathnet.ru/aa706}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2241423}
\zmath{https://zbmath.org/?q=an:1121.47031}
\transl
\jour St. Petersburg Math. J.
\yr 2006
\vol 17
\issue 5
\pages 745--762
\crossref{https://doi.org/10.1090/S1061-0022-06-00927-7}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/aa706
  • https://www.mathnet.ru/rus/aa/v17/i5/p69
  • Эта публикация цитируется в следующих 37 статьяx:
    1. М. А. Дородный, Т. А. Суслина, “Пороговые аппроксимации функций от факторизованного операторного семейства”, Алгебра и анализ, 36:1 (2024), 95–161  mathnet
    2. Т. А. Суслина, “Теоретико-операторный подход к усреднению уравнений типа Шрёдингера с периодическими коэффициентами”, УМН, 78:6(474) (2023), 47–178  mathnet  crossref  mathscinet  zmath  adsnasa; T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  crossref  isi
    3. A. A. Miloslova, T. A. Suslina, “Homogenization of the Higher-Order Parabolic Equations with Periodic Coefficients”, J Math Sci, 277:6 (2023), 959  crossref
    4. В. А. Слоущ, Т. А. Суслина, “Операторные оценки при усреднении эллиптических операторов высокого порядка с периодическими коэффициентами”, Алгебра и анализ, 35:2 (2023), 107–173  mathnet; V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375  crossref
    5. Т. А. Суслина, “Пороговые аппроксимации экспоненты факторизованного операторного семейства при учете корректоров”, Алгебра и анализ, 35:3 (2023), 138–184  mathnet; T. A. Suslina, “Threshold approximations for the exponential of a factorized operator family with correctors taken into account”, St. Petersburg Math. J., 35:3 (2024), 537–570  crossref
    6. Д. И. Борисов, “Асимптотический анализ краевых задач для оператора Лапласа с частой сменой типа граничных условий”, Дифференциальные уравнения с частными производными, СМФН, 67, № 1, Российский университет дружбы народов, М., 2021, 14–129  mathnet  crossref
    7. А. А. Милослова, Т. А. Суслина, “Усреднение параболических уравнений высокого порядка с периодическими коэффициентами”, Дифференциальные уравнения с частными производными, СМФН, 67, № 1, Российский университет дружбы народов, М., 2021, 130–191  mathnet  crossref
    8. Dorodnyi M.A., “Operator Error Estimates For Homogenization of the Nonstationary Schrodinger-Type Equations: Sharpness of the Results”, Appl. Anal., 2021  crossref  isi  scopus
    9. Meshkova Yu.M., “On Operator Error Estimates For Homogenization of Hyperbolic Systems With Periodic Coefficients”, J. Spectr. Theory, 11:2 (2021), 587–660  crossref  mathscinet  isi
    10. В. А. Слоущ, Т. А. Суслина, “Пороговые аппроксимации резольвенты полиномиального неотрицательного операторного пучка”, Алгебра и анализ, 33:2 (2021), 233–274  mathnet; V. A. Sloushch, T. A. Suslina, “Threshold approximations for the resolvent of a polynomial nonnegative operator pencil”, St. Petersburg Math. J., 33:2 (2022), 355–385  crossref
    11. В. А. Слоущ, Т. А. Суслина, “Усреднение эллиптического оператора четвертого порядка с периодическими коэффициентами при учете корректоров”, Функц. анализ и его прил., 54:3 (2020), 94–99  mathnet  crossref  mathscinet; V. A. Sloushch, T. A. Suslina, “Homogenization of the Fourth-Order Elliptic Operator with Periodic Coefficients with Correctors Taken into Account”, Funct. Anal. Appl., 54:3 (2020), 224–228  crossref  isi  elib
    12. М. А. Дородный, Т. А. Суслина, “Усреднение гиперболических уравнений с периодическими коэффициентами в $\mathbb{R}^d$: точность результатов”, Алгебра и анализ, 32:4 (2020), 3–136  mathnet  mathscinet; M. A. Dorodnyi, T. A. Suslina, “Homogenization of the hyperbolic equations with periodic coefficients in ${\mathbb R}^d$: Sharpness of the results”, St. Petersburg Math. J., 32:4 (2021), 605–703  crossref
    13. Ю. М. Мешкова, “Усреднение периодических параболических систем по $L_2(\mathbb{R}^d)$-норме при учете корректора”, Алгебра и анализ, 31:4 (2019), 137–197  mathnet; Yu. M. Meshkova, “Homogenization of periodic parabolic systems in the $ L_2(\mathbb{R}^d)$-norm with the corrector taken into account”, St. Petersburg Math. J., 31:4 (2020), 675–718  crossref  isi  elib
    14. М. А. Дородный, “Усреднение периодических уравнений типа Шрёдингера при включении членов младшего порядка”, Алгебра и анализ, 31:6 (2019), 122–196  mathnet; M. A. Dorodnyi, “Homogenization of periodic Schrödinger-type equations, with lower order terms”, St. Petersburg Math. J., 31:6 (2020), 1001–1054  crossref  isi  elib
    15. Dorodnyi M.A., Suslina T.A., “Spectral Approach to Homogenization of Hyperbolic Equations With Periodic Coefficients”, J. Differ. Equ., 264:12 (2018), 7463–7522  crossref  mathscinet  zmath  isi
    16. Suslina T.A., “Spectral Approach to Homogenization of Elliptic Operators in a Perforated Space”, Rev. Math. Phys., 30:8, SI (2018), 1840016  crossref  mathscinet  isi  scopus
    17. Suslina T., “Spectral approach to homogenization of nonstationary Schrödinger-type equations”, J. Math. Anal. Appl., 446:2 (2017), 1466–1523  crossref  mathscinet  zmath  isi  elib  scopus
    18. А. А. Кукушкин, Т. А. Суслина, “Усреднение эллиптических операторов высокого порядка с периодическими коэффициентами”, Алгебра и анализ, 28:1 (2016), 89–149  mathnet  mathscinet  elib; A. A. Kukushkin, T. A. Suslina, “Homogenization of high order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 28:1 (2017), 65–108  crossref  isi
    19. Т. А. Суслина, “Усреднение эллиптических систем с периодическими коэффициентами: операторные оценки погрешности в $L_2(\mathbb R^d)$ с учетом корректора”, Алгебра и анализ, 26:4 (2014), 195–263  mathnet  mathscinet  elib; T. A. Suslina, “Homogenization of elliptic systems with periodic coefficients: operator error estimates in $L_2(\mathbb R^d)$ with corrector taken into account”, St. Petersburg Math. J., 26:4 (2015), 643–693  crossref  isi  elib
    20. Т. А. Суслина, “Аппроксимация резольвенты двупараметрического квадратичного операторного пучка вблизи нижнего края спектра”, Алгебра и анализ, 25:5 (2013), 221–251  mathnet  mathscinet  zmath; T. A. Suslina, “Approximation of the resolvent of a twoparametric quadratic operator pencil near the bottom of the spectrum”, St. Petersburg Math. J., 25:5 (2014), 869–891  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Статистика просмотров:
    Страница аннотации:699
    PDF полного текста:260
    Список литературы:101
    Первая страница:1
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025