Аннотация:
В гильбертовом пространстве рассматривается семейство операторов, допускающее факторизацию вида A(t)=X(t)∗X(t)A(t)=X(t)∗X(t), где X(t)=X0+tX1X(t)=X0+tX1, t∈Rt∈R. Предполагается, что подпространство
N=KerA(0) конечномерно. Для резольвенты (A(t)+ε2I)−1 на фиксированном промежутке |t|≤t0 получена аппроксимация по операторной норме при малом ε. Эта аппроксимация учитывает так называемый “корректор”; остаток имеет оценку O(1). Результаты нацелены на применения к задачам гомогенизации периодических
дифференциальных операторов в пределе малого периода. Работа развивает и усиливает результаты гл. 1 статьи [BSu].
Образец цитирования:
М. Ш. Бирман, Т. А. Суслина, “Пороговые аппроксимации резольвенты факторизованного самосопряженного семейства с учетом корректора”, Алгебра и анализ, 17:5 (2005), 69–90; St. Petersburg Math. J., 17:5 (2006), 745–762
\RBibitem{BirSus05}
\by М.~Ш.~Бирман, Т.~А.~Суслина
\paper Пороговые аппроксимации резольвенты факторизованного самосопряженного семейства с~учетом корректора
\jour Алгебра и анализ
\yr 2005
\vol 17
\issue 5
\pages 69--90
\mathnet{http://mi.mathnet.ru/aa706}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2241423}
\zmath{https://zbmath.org/?q=an:1121.47031}
\transl
\jour St. Petersburg Math. J.
\yr 2006
\vol 17
\issue 5
\pages 745--762
\crossref{https://doi.org/10.1090/S1061-0022-06-00927-7}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa706
https://www.mathnet.ru/rus/aa/v17/i5/p69
Эта публикация цитируется в следующих 37 статьяx:
М. А. Дородный, Т. А. Суслина, “Пороговые аппроксимации функций от факторизованного операторного семейства”, Алгебра и анализ, 36:1 (2024), 95–161
Т. А. Суслина, “Теоретико-операторный подход к усреднению уравнений типа Шрёдингера с периодическими коэффициентами”, УМН, 78:6(474) (2023), 47–178; T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
A. A. Miloslova, T. A. Suslina, “Homogenization of the Higher-Order Parabolic Equations with Periodic Coefficients”, J Math Sci, 277:6 (2023), 959
В. А. Слоущ, Т. А. Суслина, “Операторные оценки при усреднении эллиптических операторов высокого порядка с периодическими коэффициентами”, Алгебра и анализ, 35:2 (2023), 107–173; V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375
Т. А. Суслина, “Пороговые аппроксимации экспоненты факторизованного операторного семейства при учете корректоров”, Алгебра и анализ, 35:3 (2023), 138–184; T. A. Suslina, “Threshold approximations for the exponential of a factorized operator family with correctors taken into account”, St. Petersburg Math. J., 35:3 (2024), 537–570
Д. И. Борисов, “Асимптотический анализ краевых задач для оператора Лапласа с частой сменой типа граничных условий”, Дифференциальные уравнения с частными производными, СМФН, 67, № 1, Российский университет дружбы народов, М., 2021, 14–129
А. А. Милослова, Т. А. Суслина, “Усреднение параболических уравнений высокого порядка с периодическими коэффициентами”, Дифференциальные уравнения с частными производными, СМФН, 67, № 1, Российский университет дружбы народов, М., 2021, 130–191
Dorodnyi M.A., “Operator Error Estimates For Homogenization of the Nonstationary Schrodinger-Type Equations: Sharpness of the Results”, Appl. Anal., 2021
Meshkova Yu.M., “On Operator Error Estimates For Homogenization of Hyperbolic Systems With Periodic Coefficients”, J. Spectr. Theory, 11:2 (2021), 587–660
В. А. Слоущ, Т. А. Суслина, “Пороговые аппроксимации резольвенты полиномиального неотрицательного операторного пучка”, Алгебра и анализ, 33:2 (2021), 233–274; V. A. Sloushch, T. A. Suslina, “Threshold approximations for the resolvent of a polynomial nonnegative operator pencil”, St. Petersburg Math. J., 33:2 (2022), 355–385
В. А. Слоущ, Т. А. Суслина, “Усреднение эллиптического оператора четвертого порядка с периодическими коэффициентами при учете корректоров”, Функц. анализ и его прил., 54:3 (2020), 94–99; V. A. Sloushch, T. A. Suslina, “Homogenization of the Fourth-Order Elliptic Operator with Periodic Coefficients with Correctors Taken into Account”, Funct. Anal. Appl., 54:3 (2020), 224–228
М. А. Дородный, Т. А. Суслина, “Усреднение гиперболических уравнений с периодическими коэффициентами в $\mathbb{R}^d$: точность результатов”, Алгебра и анализ, 32:4 (2020), 3–136; M. A. Dorodnyi, T. A. Suslina, “Homogenization of the hyperbolic equations with periodic coefficients in ${\mathbb R}^d$: Sharpness of the results”, St. Petersburg Math. J., 32:4 (2021), 605–703
Ю. М. Мешкова, “Усреднение периодических параболических систем по $L_2(\mathbb{R}^d)$-норме при учете корректора”, Алгебра и анализ, 31:4 (2019), 137–197; Yu. M. Meshkova, “Homogenization of periodic parabolic systems in the $ L_2(\mathbb{R}^d)$-norm with the corrector taken into account”, St. Petersburg Math. J., 31:4 (2020), 675–718
М. А. Дородный, “Усреднение периодических уравнений типа Шрёдингера при включении членов младшего порядка”, Алгебра и анализ, 31:6 (2019), 122–196; M. A. Dorodnyi, “Homogenization of periodic Schrödinger-type equations, with lower order terms”, St. Petersburg Math. J., 31:6 (2020), 1001–1054
Dorodnyi M.A., Suslina T.A., “Spectral Approach to Homogenization of Hyperbolic Equations With Periodic Coefficients”, J. Differ. Equ., 264:12 (2018), 7463–7522
Suslina T.A., “Spectral Approach to Homogenization of Elliptic Operators in a Perforated Space”, Rev. Math. Phys., 30:8, SI (2018), 1840016
Suslina T., “Spectral approach to homogenization of nonstationary Schrödinger-type equations”, J. Math. Anal. Appl., 446:2 (2017), 1466–1523
А. А. Кукушкин, Т. А. Суслина, “Усреднение эллиптических операторов высокого порядка с периодическими коэффициентами”, Алгебра и анализ, 28:1 (2016), 89–149; A. A. Kukushkin, T. A. Suslina, “Homogenization of high order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 28:1 (2017), 65–108
Т. А. Суслина, “Усреднение эллиптических систем с периодическими коэффициентами: операторные оценки погрешности в $L_2(\mathbb R^d)$ с учетом корректора”, Алгебра и анализ, 26:4 (2014), 195–263; T. A. Suslina, “Homogenization of elliptic systems with periodic coefficients: operator error estimates in $L_2(\mathbb R^d)$ with corrector taken into account”, St. Petersburg Math. J., 26:4 (2015), 643–693
Т. А. Суслина, “Аппроксимация резольвенты двупараметрического квадратичного операторного пучка вблизи нижнего края спектра”, Алгебра и анализ, 25:5 (2013), 221–251; T. A. Suslina, “Approximation of the resolvent of a twoparametric quadratic operator pencil near the bottom of the spectrum”, St. Petersburg Math. J., 25:5 (2014), 869–891