Функциональный анализ и его приложения
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Функц. анализ и его прил.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Функциональный анализ и его приложения, 2020, том 54, выпуск 3, страницы 94–99
DOI: https://doi.org/10.4213/faa3807
(Mi faa3807)
 

Эта публикация цитируется в 13 научных статьях (всего в 13 статьях)

Краткие сообщения

Усреднение эллиптического оператора четвертого порядка с периодическими коэффициентами при учете корректоров

В. А. Слоущ, Т. А. Суслина

Санкт-Петербургский государственный университет, Санкт-Петербург, Россия
Список литературы:
Аннотация: В L2(Rd;Cn) изучается эллиптический дифференциальный оператор Aε четвертого порядка. Здесь ε>0 — малый параметр. Предполагается, что оператор задан в факторизованном виде Aε=b(D)g(x/ε)b(D), где эрмитова матрица-функция g(x) периодична относительно некоторой решетки, а b(D) — матричный дифференциальный оператор второго порядка. Делаются предположения, обеспечивающие сильную эллиптичность оператора Aε. Получена аппроксимация резольвенты (Aε+I)1 по операторной норме в L2(Rd;Cn) вида
(Aε+I)1=(A0+I)1+εK1+ε2K2(ε)+O(ε3).
Здесь A0 — эффективный оператор с постоянными коэффициентами, а K1 и K2(ε) — некоторые корректоры.
Ключевые слова: периодические дифференциальные операторы, усреднение, операторные оценки погрешности, эффективный оператор, корректор.
Финансовая поддержка Номер гранта
Российский научный фонд 17-11-01069
Работа выполнена при поддержке РНФ (проект 17-11-01069).
Поступило в редакцию: 07.07.2020
Исправленный вариант: 09.07.2020
Принята в печать: 12.07.2020
Англоязычная версия:
Functional Analysis and Its Applications, 2020, Volume 54, Issue 3, Pages 224–228
DOI: https://doi.org/10.1134/S0016266320030077
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.956.2
Образец цитирования: В. А. Слоущ, Т. А. Суслина, “Усреднение эллиптического оператора четвертого порядка с периодическими коэффициентами при учете корректоров”, Функц. анализ и его прил., 54:3 (2020), 94–99; Funct. Anal. Appl., 54:3 (2020), 224–228
Цитирование в формате AMSBIB
\RBibitem{SloSus20}
\by В.~А.~Слоущ, Т.~А.~Суслина
\paper Усреднение эллиптического оператора четвертого порядка с периодическими коэффициентами при учете корректоров
\jour Функц. анализ и его прил.
\yr 2020
\vol 54
\issue 3
\pages 94--99
\mathnet{http://mi.mathnet.ru/faa3807}
\crossref{https://doi.org/10.4213/faa3807}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4136857}
\elib{https://elibrary.ru/item.asp?id=46806080}
\transl
\jour Funct. Anal. Appl.
\yr 2020
\vol 54
\issue 3
\pages 224--228
\crossref{https://doi.org/10.1134/S0016266320030077}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000626500200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85102183614}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/faa3807
  • https://doi.org/10.4213/faa3807
  • https://www.mathnet.ru/rus/faa/v54/i3/p94
  • Эта публикация цитируется в следующих 13 статьяx:
    1. S. E. Pastukhova, “Improved Homogenization Estimates for Higher-order Elliptic Operators in Energy Norms”, Lobachevskii J Math, 45:7 (2024), 3351  crossref
    2. В. А. Слоущ, Т. А. Суслина, “Операторные оценки при усреднении эллиптических операторов высокого порядка с периодическими коэффициентами”, Алгебра и анализ, 35:2 (2023), 107–173  mathnet; V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375  crossref
    3. С. Е. Пастухова, “Об операторных оценках усреднения для эллиптических систем высокого порядка”, Матем. заметки, 114:3 (2023), 370–389  mathnet  crossref  mathscinet; S. E. Pastukhova, “On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems”, Math. Notes, 114:3 (2023), 322–338  crossref
    4. Т. А. Суслина, “Теоретико-операторный подход к усреднению уравнений типа Шрёдингера с периодическими коэффициентами”, УМН, 78:6(474) (2023), 47–178  mathnet  crossref  mathscinet  zmath  adsnasa; T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  crossref  isi
    5. А. А. Раев, В. А. Слоущ, Т. А. Суслина, “Усреднение одномерного периодического оператора четвертого порядка с сингулярным потенциалом”, Математические вопросы теории распространения волн. 53, Зап. научн. сем. ПОМИ, 521, ПОМИ, СПб., 2023, 212–239  mathnet
    6. A. A. Miloslova, T. A. Suslina, “Homogenization of the higher-order parabolic equations with periodic coefficients”, J. Math. Sci., 277:6 (2023), 959  crossref  mathscinet
    7. A. Piatnitski, V. Sloushch, T. Suslina, E. Zhizhina, “On operator estimates in homogenization of nonlocal operators of convolution type”, Journal of Differential Equations, 352 (2023), 153  crossref
    8. С. Е. Пастухова, “Улучшенные L2-аппроксимации резольвенты в усреднении операторов четвёртого порядка”, Алгебра и анализ, 34:4 (2022), 74–106  mathnet  mathscinet; S. E. Pastukhova, “Improved L2-approximation of resolvents in homogenization of fourth order operators”, St. Petersburg Math. J., 34:4 (2023), 611–634  crossref
    9. С. Е. Пастухова, “L2-аппроксимация резольвенты в усреднении эллиптических операторов четвертого порядка”, Матем. сб., 212:1 (2021), 119–142  mathnet  crossref  mathscinet  zmath  adsnasa; S. E. Pastukhova, “Approximation of resolvents in homogenization of fourth-order elliptic operators”, Sb. Math., 212:1 (2021), 111–134  crossref  isi  elib
    10. В. А. Слоущ, Т. А. Суслина, “Пороговые аппроксимации резольвенты полиномиального неотрицательного операторного пучка”, Алгебра и анализ, 33:2 (2021), 233–274  mathnet; V. A. Sloushch, T. A. Suslina, “Threshold approximations for the resolvent of a polynomial nonnegative operator pencil”, St. Petersburg Math. J., 33:2 (2022), 355–385  crossref
    11. А. А. Милослова, Т. А. Суслина, “Усреднение параболических уравнений высокого порядка с периодическими коэффициентами”, Дифференциальные уравнения с частными производными, СМФН, 67, № 1, Российский университет дружбы народов, М., 2021, 130–191  mathnet  crossref
    12. T. A. Suslina, “Homogenization of the Higher-Order Hyperbolic Equations with Periodic Coefficients”, Lobachevskii J Math, 42:14 (2021), 3518  crossref  mathscinet
    13. S. E. Pastukhova, “L2- Approximation of Resolvents in Homogenization of Higher Order Elliptic Operators”, J Math Sci, 251:6 (2020), 902  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Статистика просмотров:
    Страница аннотации:350
    PDF полного текста:62
    Список литературы:48
    Первая страница:5
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025