Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2011, Volume 56, Issue 1, Pages 3–29
DOI: https://doi.org/10.4213/tvp4321
(Mi tvp4321)
 

This article is cited in 20 scientific papers (total in 20 papers)

Chebyshev type exponential inequalities for sums of random vectors and random walk trajectories

A. A. Borovkov, A. A. Mogul'skii

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: We obtain analogues of the well-known Chebyshev's exponential inequality P(ξx)eΛ(ξ)(x), x>Eξ, for the distribution of a random variable ξ, where Λ(ξ)(x):=supλ{λxlogEeλξ} is the large deviation rate function for ξ. Generalizations of this relation are established for multivariate random vectors ξ, for sums of the vectors, and for trajectories of random processes associated with such sums.
Keywords: Cramér condition, large deviation rate function, random walk, deviation functional, action functional, convex set, large deviations, large deviation principle, extended large deviation principle, inequalities for large deviations.
Received: 20.10.2010
English version:
Theory of Probability and its Applications, 2012, Volume 56, Issue 1, Pages 21–43
DOI: https://doi.org/10.1137/S0040585X97985182
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Borovkov, A. A. Mogul'skii, “Chebyshev type exponential inequalities for sums of random vectors and random walk trajectories”, Teor. Veroyatnost. i Primenen., 56:1 (2011), 3–29; Theory Probab. Appl., 56:1 (2012), 21–43
Citation in format AMSBIB
\Bibitem{BorMog11}
\by A.~A.~Borovkov, A.~A.~Mogul'skii
\paper Chebyshev type exponential inequalities for sums of random vectors and random walk trajectories
\jour Teor. Veroyatnost. i Primenen.
\yr 2011
\vol 56
\issue 1
\pages 3--29
\mathnet{http://mi.mathnet.ru/tvp4321}
\crossref{https://doi.org/10.4213/tvp4321}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2848414}
\zmath{https://zbmath.org/?q=an:1238.60022}
\elib{https://elibrary.ru/item.asp?id=20732882}
\transl
\jour Theory Probab. Appl.
\yr 2012
\vol 56
\issue 1
\pages 21--43
\crossref{https://doi.org/10.1137/S0040585X97985182}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000300635400002}
\elib{https://elibrary.ru/item.asp?id=17986157}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84861397070}
Linking options:
  • https://www.mathnet.ru/eng/tvp4321
  • https://doi.org/10.4213/tvp4321
  • https://www.mathnet.ru/eng/tvp/v56/i1/p3
  • This publication is cited in the following 20 articles:
    1. Ryan T. White, “On the Exiting Patterns of Multivariate Renewal-Reward Processes with an Application to Stochastic Networks”, Symmetry, 14:6 (2022), 1167  crossref
    2. A. V. Logachov, A. A. Mogul'skii, “Exponential chebyshev inequalities for random graphons and their applications”, Siberian Math. J., 61:4 (2020), 697–714  mathnet  crossref  crossref  isi  elib
    3. A. V. Logachev, A. A. Mogulskii, “Lokalnye teoremy dlya konechnomernykh priraschenii arifmeticheskikh mnogomernykh obobschennykh protsessov vosstanovleniya pri vypolnenii usloviya Kramera”, Sib. elektron. matem. izv., 17 (2020), 1766–1786  mathnet  crossref
    4. A. A. Mogulskii, “Lokalnye teoremy dlya arifmeticheskikh obobschennykh protsessov vosstanovleniya pri vypolnenii usloviya Kramera”, Sib. elektron. matem. izv., 16 (2019), 21–41  mathnet  crossref
    5. A. A. Mogul'skiǐ, E. I. Prokopenko, “Local theorems for arithmetic multidimensional compound renewal processes under Cramér's condition”, Siberian Adv. Math., 30:4 (2020), 284–302  mathnet  crossref  crossref
    6. Dolera E., Regazzini E., “Uniform Rates of the Glivenko-Cantelli Convergence and Their Use in Approximating Bayesian Inferences”, Bernoulli, 25:4A (2019), 2982–3015  crossref  mathscinet  isi
    7. A. A. Mogul'skiǐ, “The extended large deviation principle for a process with independent increments”, Siberian Math. J., 58:3 (2017), 515–524  mathnet  crossref  crossref  isi  elib  elib
    8. A. A. Mogul'skiǐ, “The large deviation principle for a compound Poisson process”, Siberian Adv. Math., 27:3 (2017), 160–186  mathnet  crossref  crossref  elib
    9. A. A. Borovkov, A. A. Mogul'skiǐ, “Large deviation principles for sums of random vectors and the corresponding renewal functions in the inhomogeneous case”, Siberian Adv. Math., 25:4 (2015), 255–267  mathnet  crossref  mathscinet
    10. A. A. Borovkov, A. A. Mogul'skiǐ, “Inequalities and principles of large deviations for the trajectories of processes with independent increments”, Siberian Math. J., 54:2 (2013), 217–226  mathnet  crossref  mathscinet  isi
    11. A. A. Mogul'skiǐ, “On the upper bound in the large deviation principle for sums of random vectors”, Siberian Adv. Math., 24:2 (2014), 140–152  mathnet  crossref  mathscinet  elib
    12. A. A. Borovkov, A. A. Mogulskii, “Large deviation principles for random walk trajectories. III”, Theory Probab. Appl., 58:1 (2014), 25–37  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    13. A. A. Borovkov, A. A. Mogul'skiǐ, “Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments”, Siberian Adv. Math., 25:1 (2015), 39–55  mathnet  crossref  mathscinet
    14. A. A. Borovkov, A. A. Mogul'skii, “Moderately large deviation principles for trajectories of random walks and processes with independent increments”, Theory Probab. Appl., 58:4 (2014), 562–581  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    15. Aurelija Kasparavičiūtė, Theorems of Large Deviations for the Sums of a Random Number of Independent Random Variables, 2013  crossref
    16. A. A. Borovkov, A. A. Mogul'skii, “On large deviation principles for random walk trajectories. II”, Theory Probab. Appl., 57:1 (2013), 1–27  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    17. A. A. Mogul'skiǐ, “The expansion theorem for the deviation integral”, Siberian Adv. Math., 23:4 (2013), 250–262  mathnet  crossref  mathscinet  elib
    18. A. A. Borovkov, A. A. Mogul'skiǐ, “Properties of a functional of trajectories which arises in studying the probabilities of large deviations of random walks”, Siberian Math. J., 52:4 (2011), 612–627  mathnet  crossref  mathscinet  isi
    19. A. A. Borovkov, A. A. Mogul'skii, “On large deviation principles for random walk trajectories. I”, Theory Probab. Appl., 56:4 (2011), 538–561  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    20. A. A. Borovkov, A. A. Mogul'skiǐ, “On large deviation principles in metric spaces”, Siberian Math. J., 51:6 (2010), 989–1003  mathnet  mathnet  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:920
    Full-text PDF :374
    References:160
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025