Abstract:
For a compound Poisson process, under the moment Cramér condition, the extended large deviation principle is established in the space of functions of bounded variation with the Borovkov metric.
Key words:
compound Poisson process, compound renewal process, Cramér condition, deviation rate function, large deviation principle, extended large deviation principle, function of bounded variation, Borovkov metric, Chebyshev-type inequality.
Citation:
A. A. Mogul'skiǐ, “The large deviation principle for a compound Poisson process”, Mat. Tr., 19:2 (2016), 119–157; Siberian Adv. Math., 27:3 (2017), 160–186
\Bibitem{Mog16}
\by A.~A.~Mogul'ski{\v\i}
\paper The large deviation principle for a compound Poisson process
\jour Mat. Tr.
\yr 2016
\vol 19
\issue 2
\pages 119--157
\mathnet{http://mi.mathnet.ru/mt308}
\crossref{https://doi.org/10.17377/mattrudy.2016.19.205}
\elib{https://elibrary.ru/item.asp?id=27258781}
\transl
\jour Siberian Adv. Math.
\yr 2017
\vol 27
\issue 3
\pages 160--186
\crossref{https://doi.org/10.3103/S1055134417030026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85028601052}
Linking options:
https://www.mathnet.ru/eng/mt308
https://www.mathnet.ru/eng/mt/v19/i2/p119
This publication is cited in the following 9 articles:
Jose Javier Cerda-Hernández, Artem Logachov, Anatoly Yambartsev, “Bid-ask spread dynamics: large upward jump with geometric catastrophes”, RAIRO-Oper. Res., 58:2 (2024), 1375
Alice Callegaro, Matthew I. Roberts, “A spatially-dependent fragmentation process”, Probab. Theory Relat. Fields, 2024
Artem Logachov, Yuri Suhov, Nikita Vvedenskaya, Anatoly Yambartsev, “A large-deviation principle for birth–death processes with a linear rate of downward jumps”, J. Appl. Probab., 2023, 1
A. A. Mogul'skiǐ, “The Extended Large Deviation Principle for the Trajectories of a Compound Renewal Process”, Sib. Adv. Math., 32:1 (2022), 35
A. A. Mogulskii, “Rasshirennyi printsip bolshikh uklonenii dlya traektorii obobschennogo protsessa vosstanovleniya”, Matem. tr., 24:1 (2021), 142–174
F. C. Klebaner, A. V. Logachov, A. A. Mogulskii, “Extended large deviation principle for trajectories of processes with independent and stationary increments on the half-line”, Problems Inform. Transmission, 56:1 (2020), 56–72
F. C. Klebaner, A. A. Mogulskii, “Large deviations for processes on half-line: Random Walk and Compound Poisson Process”, Sib. elektron. matem. izv., 16 (2019), 1–20
A. Grigor'yan, Yu. Kondratiev, A. Piatnitski, E. Zhizhina, “Pointwise estimates for heat kernels of convolution-type operators”, Proc. London Math. Soc., 117:4 (2018), 849–880
A. A. Mogul'skiǐ, “The extended large deviation principle for a process with independent increments”, Siberian Math. J., 58:3 (2017), 515–524