Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2016, Volume 19, Number 2, Pages 119–157
DOI: https://doi.org/10.17377/mattrudy.2016.19.205
(Mi mt308)
 

This article is cited in 9 scientific papers (total in 9 papers)

The large deviation principle for a compound Poisson process

A. A. Mogul'skiĭab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (357 kB) Citations (9)
References:
Abstract: For a compound Poisson process, under the moment Cramér condition, the extended large deviation principle is established in the space of functions of bounded variation with the Borovkov metric.
Key words: compound Poisson process, compound renewal process, Cramér condition, deviation rate function, large deviation principle, extended large deviation principle, function of bounded variation, Borovkov metric, Chebyshev-type inequality.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00220_а
Received: 12.05.2015
English version:
Siberian Advances in Mathematics, 2017, Volume 27, Issue 3, Pages 160–186
DOI: https://doi.org/10.3103/S1055134417030026
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: A. A. Mogul'skiǐ, “The large deviation principle for a compound Poisson process”, Mat. Tr., 19:2 (2016), 119–157; Siberian Adv. Math., 27:3 (2017), 160–186
Citation in format AMSBIB
\Bibitem{Mog16}
\by A.~A.~Mogul'ski{\v\i}
\paper The large deviation principle for a compound Poisson process
\jour Mat. Tr.
\yr 2016
\vol 19
\issue 2
\pages 119--157
\mathnet{http://mi.mathnet.ru/mt308}
\crossref{https://doi.org/10.17377/mattrudy.2016.19.205}
\elib{https://elibrary.ru/item.asp?id=27258781}
\transl
\jour Siberian Adv. Math.
\yr 2017
\vol 27
\issue 3
\pages 160--186
\crossref{https://doi.org/10.3103/S1055134417030026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85028601052}
Linking options:
  • https://www.mathnet.ru/eng/mt308
  • https://www.mathnet.ru/eng/mt/v19/i2/p119
  • This publication is cited in the following 9 articles:
    1. Jose Javier Cerda-Hernández, Artem Logachov, Anatoly Yambartsev, “Bid-ask spread dynamics: large upward jump with geometric catastrophes”, RAIRO-Oper. Res., 58:2 (2024), 1375  crossref
    2. Alice Callegaro, Matthew I. Roberts, “A spatially-dependent fragmentation process”, Probab. Theory Relat. Fields, 2024  crossref
    3. Artem Logachov, Yuri Suhov, Nikita Vvedenskaya, Anatoly Yambartsev, “A large-deviation principle for birth–death processes with a linear rate of downward jumps”, J. Appl. Probab., 2023, 1  crossref
    4. A. A. Mogul'skiǐ, “The Extended Large Deviation Principle for the Trajectories of a Compound Renewal Process”, Sib. Adv. Math., 32:1 (2022), 35  crossref
    5. A. A. Mogulskii, “Rasshirennyi printsip bolshikh uklonenii dlya traektorii obobschennogo protsessa vosstanovleniya”, Matem. tr., 24:1 (2021), 142–174  mathnet  crossref
    6. F. C. Klebaner, A. V. Logachov, A. A. Mogulskii, “Extended large deviation principle for trajectories of processes with independent and stationary increments on the half-line”, Problems Inform. Transmission, 56:1 (2020), 56–72  mathnet  crossref  crossref  isi  elib
    7. F. C. Klebaner, A. A. Mogulskii, “Large deviations for processes on half-line: Random Walk and Compound Poisson Process”, Sib. elektron. matem. izv., 16 (2019), 1–20  mathnet  crossref
    8. A. Grigor'yan, Yu. Kondratiev, A. Piatnitski, E. Zhizhina, “Pointwise estimates for heat kernels of convolution-type operators”, Proc. London Math. Soc., 117:4 (2018), 849–880  crossref  mathscinet  zmath  isi  scopus
    9. A. A. Mogul'skiǐ, “The extended large deviation principle for a process with independent increments”, Siberian Math. J., 58:3 (2017), 515–524  mathnet  crossref  crossref  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:450
    Full-text PDF :158
    References:65
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025