Abstract:
Under the inhomogeneous case wemean the case when one or several (arbitrarily many) inhomogeneous summands are added to the sum of independent identically distributed vectors. We find necessary and sufficient conditions under which the large deviation principles for such sums and the corresponding renewal functions have the same form that in the homogeneous case.
Key words:
large deviation principles, inhomogeneous sum of random vectors, renewal function, deviation rate function, second deviation rate function.
Citation:
A. A. Borovkov, A. A. Mogul'skiǐ, “Large deviation principles for sums of random vectors and the corresponding renewal functions in the inhomogeneous case”, Mat. Tr., 17:2 (2014), 84–101; Siberian Adv. Math., 25:4 (2015), 255–267
\Bibitem{BorMog14}
\by A.~A.~Borovkov, A.~A.~Mogul'ski{\v\i}
\paper Large deviation principles for sums of random vectors and the corresponding renewal functions in the inhomogeneous case
\jour Mat. Tr.
\yr 2014
\vol 17
\issue 2
\pages 84--101
\mathnet{http://mi.mathnet.ru/mt278}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3330052}
\transl
\jour Siberian Adv. Math.
\yr 2015
\vol 25
\issue 4
\pages 255--267
\crossref{https://doi.org/10.3103/S1055134415040033}
Linking options:
https://www.mathnet.ru/eng/mt278
https://www.mathnet.ru/eng/mt/v17/i2/p84
This publication is cited in the following 5 articles:
A. A. Borovkov, “On Large Deviation Principles for Compound Renewal Processes”, Math. Notes, 106:6 (2019), 864–871
Alexander Veretennikov, Springer Proceedings in Mathematics & Statistics, 208, Modern Problems of Stochastic Analysis and Statistics, 2017, 457
A. A. Borovkov, “Large deviation principles in boundary problems for compound renewal processes”, Siberian Math. J., 57:3 (2016), 442–469
A. A. Borovkov, A. A. Mogul'skiǐ, “Large deviation principles for the finite-dimensional distributions of compound renewal processes”, Siberian Math. J., 56:1 (2015), 28–53
A. A. Borovkov, A. A. Mogul'skii, “Large deviation principles for trajectories of compound renewal processes. I”, Theory Probab. Appl., 60:2 (2016), 207–221