Abstract:
The present paper is a continuation of [A. A. Borovkov and A. A. Mogulskii, Theory Probab. Appl. 57, No. 1, 1–27 (2013); translation from Teor. Veroyatn. Primen. 57, No. 1, 3–34 (2012; Zbl 1279.60037)]. It consists of two sections. Section 6 presents results similar to those obtained in Sections 4 and 5, but now in the space of functions of bounded variation with metric stronger than that of D. In Section 7 we obtain the so-called conditional large deviation principles for the trajectories of univariate random walks with a localized terminal value of the walk. As a consequence, we prove a version of Sanov’s theorem on large deviations of empirical distributions.
Keywords:
extended large deviation principle in the space of functions of bounded variation; local large deviation principle; integro-local Gnedenko and Stone-Shepp theorems; Sanov theorem; large deviations of empirical distributions.
Citation:
A. A. Borovkov, A. A. Mogulskii, “Large deviation principles for random walk trajectories. III”, Teor. Veroyatnost. i Primenen., 58:1 (2013), 37–52; Theory Probab. Appl., 58:1 (2014), 25–37
This publication is cited in the following 19 articles:
Mihail Bazhba, Jose Blanchet, Chang-Han Rhee, Bert Zwart, “Sample-Path Large Deviations for Unbounded Additive Functionals of the Reflected Random Walk”, Mathematics of OR, 2024
Léo Dort, Christina Goldschmidt, Grégory Miermont, “A large deviation principle for the normalized excursion of an α-stable Lévy process without negative jumps”, ALEA, 21:2 (2024), 1625
Artem Logachov, Yuri Suhov, Nikita Vvedenskaya, Anatoly Yambartsev, “A large-deviation principle for birth–death processes with a linear rate of downward jumps”, J. Appl. Probab., 2023, 1
A. A. Borovkov, “On the existence conditions for exact large deviation principles”, Siberian Math. J., 63:1 (2022), 48–64
A. A. Mogul'skiǐ, “The Extended Large Deviation Principle for the Trajectories of a Compound Renewal Process”, Sib. Adv. Math., 32:1 (2022), 35
A. A. Borovkov, “On exact large deviation principles for compound renewal processes”, Theory Probab. Appl., 66:2 (2021), 170–183
A. A. Mogulskii, “Rasshirennyi printsip bolshikh uklonenii dlya traektorii obobschennogo protsessa vosstanovleniya”, Matem. tr., 24:1 (2021), 142–174
Vysotsky V., “Contraction Principle For Trajectories of Random Walks and Cramer'S Theorem For Kernel-Weighted Sums”, ALEA-Latin Am. J. Probab. Math. Stat., 18:2 (2021), 1103–1125
Artem Logachov, Olga Logachova, Anatoly Yambartsev, “The local principle of large deviations for compound Poisson process with catastrophes”, Braz. J. Probab. Stat., 35:2 (2021)
F. C. Klebaner, A. V. Logachov, A. A. Mogulskii, “Extended large deviation principle for trajectories of processes with independent and stationary increments on the half-line”, Problems Inform. Transmission, 56:1 (2020), 56–72
A. A. Borovkov, “Functional limit theorems for compound renewal processes”, Siberian Math. J., 60:1 (2019), 27–40
F. C. Klebaner, A. A. Mogulskii, “Large deviations for processes on half-line: Random Walk and Compound Poisson Process”, Sib. elektron. matem. izv., 16 (2019), 1–20
A. A. Mogul'skiǐ, “The extended large deviation principle for a process with independent increments”, Siberian Math. J., 58:3 (2017), 515–524
A. A. Mogul'skiǐ, “The large deviation principle for a compound Poisson process”, Siberian Adv. Math., 27:3 (2017), 160–186
Bakhtin V. Sokal E., “The Kullback–Leibler Information Function for Infinite Measures”, Entropy, 18:12 (2016), 448
A. A. Borovkov, A. A. Mogul'skiǐ, “Large deviation principles for the finite-dimensional distributions of compound renewal processes”, Siberian Math. J., 56:1 (2015), 28–53
A. A. Borovkov, A. A. Mogul'skii, “Large deviation principles for trajectories of compound renewal processes. I”, Theory Probab. Appl., 60:2 (2016), 207–221
A. A. Borovkov, A. A. Mogul'skiǐ, “Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments”, Siberian Adv. Math., 25:1 (2015), 39–55
A. A. Borovkov, A. A. Mogul'skii, “Moderately large deviation principles for trajectories of random walks and processes with independent increments”, Theory Probab. Appl., 58:4 (2014), 562–581