Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2013, Volume 58, Issue 1, Pages 37–52
DOI: https://doi.org/10.4213/tvp4493
(Mi tvp4493)
 

This article is cited in 19 scientific papers (total in 19 papers)

Large deviation principles for random walk trajectories. III

A. A. Borovkov, A. A. Mogulskii

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: The present paper is a continuation of [A. A. Borovkov and A. A. Mogulskii, Theory Probab. Appl. 57, No. 1, 1–27 (2013); translation from Teor. Veroyatn. Primen. 57, No. 1, 3–34 (2012; Zbl 1279.60037)]. It consists of two sections. Section 6 presents results similar to those obtained in Sections 4 and 5, but now in the space of functions of bounded variation with metric stronger than that of D. In Section 7 we obtain the so-called conditional large deviation principles for the trajectories of univariate random walks with a localized terminal value of the walk. As a consequence, we prove a version of Sanov’s theorem on large deviations of empirical distributions.
Keywords: extended large deviation principle in the space of functions of bounded variation; local large deviation principle; integro-local Gnedenko and Stone-Shepp theorems; Sanov theorem; large deviations of empirical distributions.
Received: 02.08.2011
Revised: 14.06.2012
English version:
Theory of Probability and its Applications, 2014, Volume 58, Issue 1, Pages 25–37
DOI: https://doi.org/10.1137/S0040585X97986370
Bibliographic databases:
Document Type: Article
MSC: 60F10, 60G50
Language: Russian
Citation: A. A. Borovkov, A. A. Mogulskii, “Large deviation principles for random walk trajectories. III”, Teor. Veroyatnost. i Primenen., 58:1 (2013), 37–52; Theory Probab. Appl., 58:1 (2014), 25–37
Citation in format AMSBIB
\Bibitem{BorMog13}
\by A.~A.~Borovkov, A.~A.~Mogulskii
\paper Large deviation principles for random walk trajectories. III
\jour Teor. Veroyatnost. i Primenen.
\yr 2013
\vol 58
\issue 1
\pages 37--52
\mathnet{http://mi.mathnet.ru/tvp4493}
\crossref{https://doi.org/10.4213/tvp4493}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3267282}
\zmath{https://zbmath.org/?q=an:06308869}
\elib{https://elibrary.ru/item.asp?id=20732997}
\transl
\jour Theory Probab. Appl.
\yr 2014
\vol 58
\issue 1
\pages 25--37
\crossref{https://doi.org/10.1137/S0040585X97986370}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332790300004}
\elib{https://elibrary.ru/item.asp?id=21868140}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896873748}
Linking options:
  • https://www.mathnet.ru/eng/tvp4493
  • https://doi.org/10.4213/tvp4493
  • https://www.mathnet.ru/eng/tvp/v58/i1/p37
    Cycle of papers
    This publication is cited in the following 19 articles:
    1. Mihail Bazhba, Jose Blanchet, Chang-Han Rhee, Bert Zwart, “Sample-Path Large Deviations for Unbounded Additive Functionals of the Reflected Random Walk”, Mathematics of OR, 2024  crossref
    2. Léo Dort, Christina Goldschmidt, Grégory Miermont, “A large deviation principle for the normalized excursion of an α-stable Lévy process without negative jumps”, ALEA, 21:2 (2024), 1625  crossref
    3. Artem Logachov, Yuri Suhov, Nikita Vvedenskaya, Anatoly Yambartsev, “A large-deviation principle for birth–death processes with a linear rate of downward jumps”, J. Appl. Probab., 2023, 1  crossref
    4. A. A. Borovkov, “On the existence conditions for exact large deviation principles”, Siberian Math. J., 63:1 (2022), 48–64  mathnet  crossref  crossref  mathscinet
    5. A. A. Mogul'skiǐ, “The Extended Large Deviation Principle for the Trajectories of a Compound Renewal Process”, Sib. Adv. Math., 32:1 (2022), 35  crossref
    6. A. A. Borovkov, “On exact large deviation principles for compound renewal processes”, Theory Probab. Appl., 66:2 (2021), 170–183  mathnet  crossref  crossref  zmath
    7. A. A. Mogulskii, “Rasshirennyi printsip bolshikh uklonenii dlya traektorii obobschennogo protsessa vosstanovleniya”, Matem. tr., 24:1 (2021), 142–174  mathnet  crossref
    8. Vysotsky V., “Contraction Principle For Trajectories of Random Walks and Cramer'S Theorem For Kernel-Weighted Sums”, ALEA-Latin Am. J. Probab. Math. Stat., 18:2 (2021), 1103–1125  crossref  mathscinet  isi
    9. Artem Logachov, Olga Logachova, Anatoly Yambartsev, “The local principle of large deviations for compound Poisson process with catastrophes”, Braz. J. Probab. Stat., 35:2 (2021)  crossref
    10. F. C. Klebaner, A. V. Logachov, A. A. Mogulskii, “Extended large deviation principle for trajectories of processes with independent and stationary increments on the half-line”, Problems Inform. Transmission, 56:1 (2020), 56–72  mathnet  crossref  crossref  isi  elib
    11. A. A. Borovkov, “Functional limit theorems for compound renewal processes”, Siberian Math. J., 60:1 (2019), 27–40  mathnet  crossref  crossref  mathscinet  isi  elib
    12. F. C. Klebaner, A. A. Mogulskii, “Large deviations for processes on half-line: Random Walk and Compound Poisson Process”, Sib. elektron. matem. izv., 16 (2019), 1–20  mathnet  crossref
    13. A. A. Mogul'skiǐ, “The extended large deviation principle for a process with independent increments”, Siberian Math. J., 58:3 (2017), 515–524  mathnet  crossref  crossref  isi  elib  elib
    14. A. A. Mogul'skiǐ, “The large deviation principle for a compound Poisson process”, Siberian Adv. Math., 27:3 (2017), 160–186  mathnet  crossref  crossref  elib
    15. Bakhtin V. Sokal E., “The Kullback–Leibler Information Function for Infinite Measures”, Entropy, 18:12 (2016), 448  crossref  isi  elib  scopus
    16. A. A. Borovkov, A. A. Mogul'skiǐ, “Large deviation principles for the finite-dimensional distributions of compound renewal processes”, Siberian Math. J., 56:1 (2015), 28–53  mathnet  crossref  mathscinet  isi  elib  elib
    17. A. A. Borovkov, A. A. Mogul'skii, “Large deviation principles for trajectories of compound renewal processes. I”, Theory Probab. Appl., 60:2 (2016), 207–221  mathnet  crossref  crossref  mathscinet  isi  elib
    18. A. A. Borovkov, A. A. Mogul'skiǐ, “Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments”, Siberian Adv. Math., 25:1 (2015), 39–55  mathnet  crossref  mathscinet
    19. A. A. Borovkov, A. A. Mogul'skii, “Moderately large deviation principles for trajectories of random walks and processes with independent increments”, Theory Probab. Appl., 58:4 (2014), 562–581  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:707
    Full-text PDF :225
    References:120
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025