Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2010, Volume 51, Number 6, Pages 1251–1269 (Mi smj2159)  

This article is cited in 29 scientific papers (total in 29 papers)

On large deviation principles in metric spaces

A. A. Borovkovab, A. A. Mogul'skiĭab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University, Novosibirsk
References:
Abstract: Many articles deal with large deviation principles (LDPs) (see [1–4] for instance and the references in [3, 4]), studying mainly the LDP for the sums of random elements or for various stochastic models and dynamical systems. For a sequence of random elements in a metric space, in studying LDPs it turns out natural to introduce the concepts of the local LDP and extended LDP. They enable us to state and prove LDP-type statements in those cases when the usual LDP (cf. [3, 4]) fails (see [5, 6] and Section 6 of this article). We obtain conditions for the fulfillment of the extended LDP in metric spaces. The main among these conditions is the fulfillment of the local LDP. The latter is usually much simpler to prove than the extended LDP.
Keywords: large deviation principle, extended large deviation principle, local large deviation principle, deviation function, totally bounded set, compact set.
Received: 01.02.2010
English version:
Siberian Mathematical Journal, 2010, Volume 51, Issue 6, Pages 989–1003
DOI: https://doi.org/10.1007/s11202-010-0098-0
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: A. A. Borovkov, A. A. Mogul'skiǐ, “On large deviation principles in metric spaces”, Sibirsk. Mat. Zh., 51:6 (2010), 1251–1269; Siberian Math. J., 51:6 (2010), 989–1003
Citation in format AMSBIB
\Bibitem{BorMog10}
\by A.~A.~Borovkov, A.~A.~Mogul'ski{\v\i}
\paper On large deviation principles in metric spaces
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 6
\pages 1251--1269
\mathnet{http://mi.mathnet.ru/smj2159}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2797595}
\elib{https://elibrary.ru/item.asp?id=15563606}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 6
\pages 989--1003
\crossref{https://doi.org/10.1007/s11202-010-0098-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288180800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650729115}
Linking options:
  • https://www.mathnet.ru/eng/smj2159
  • https://www.mathnet.ru/eng/smj/v51/i6/p1251
  • This publication is cited in the following 29 articles:
    1. Mihail Bazhba, Chang-Han Rhee, Bert Zwart, “Large deviations for stochastic fluid networks with Weibullian tails”, Queueing Syst, 102:1-2 (2022), 25  crossref
    2. A. A. Mogul'skiǐ, “The Extended Large Deviation Principle for the Trajectories of a Compound Renewal Process”, Sib. Adv. Math., 32:1 (2022), 35  crossref
    3. A. A. Mogulskii, “Rasshirennyi printsip bolshikh uklonenii dlya traektorii obobschennogo protsessa vosstanovleniya”, Matem. tr., 24:1 (2021), 142–174  mathnet  crossref
    4. Logachov A. Logachova O. Yambartsev A., “The Local Principle of Large Deviations For Compound Poisson Process With Catastrophes”, Braz. J. Probab. Stat., 35:2 (2021), 205–223  crossref  mathscinet  zmath  isi  scopus
    5. Vysotsky V., “Contraction Principle For Trajectories of Random Walks and Cramer'S Theorem For Kernel-Weighted Sums”, ALEA-Latin Am. J. Probab. Math. Stat., 18:2 (2021), 1103–1125  crossref  mathscinet  zmath  isi  scopus
    6. F. C. Klebaner, A. V. Logachov, A. A. Mogulskii, “Extended large deviation principle for trajectories of processes with independent and stationary increments on the half-line”, Problems Inform. Transmission, 56:1 (2020), 56–72  mathnet  crossref  crossref  isi  elib
    7. Sharov K.S., “Creating and Applying Sir Modified Compartmental Model For Calculation of Covid-19 Lockdown Efficiency”, Chaos Solitons Fractals, 141 (2020), 110295  crossref  mathscinet  isi  scopus
    8. Bazhba M., Blanchet J., Rhee Ch.-H., Zwart B., “Sample Path Large Deviations For Levy Processes and Random Walks With Weibull Increments”, Ann. Appl. Probab., 30:6 (2020), 2695–2739  crossref  mathscinet  isi  scopus
    9. Logachov A., Logachova O., Yambartsev A., “Local Large Deviation Principle For Wiener Process With Random Resetting”, Stoch. Dyn., 20:5 (2020), 2050032  crossref  mathscinet  zmath  isi  scopus
    10. F. C. Klebaner, A. A. Mogulskii, “Large deviations for processes on half-line: Random Walk and Compound Poisson Process”, Sib. elektron. matem. izv., 16 (2019), 1–20  mathnet  crossref
    11. Bakhtin V.I., Lebedev A.V., “Entropy Statistic Theorem and Variational Principle For T-Entropy Are Equivalent”, J. Math. Anal. Appl., 474:1 (2019), 59–71  crossref  mathscinet  zmath  isi  scopus
    12. N. D. Vvedenskaya, A. V. Logachov, Yu. M. Suhov, A. A. Yambartsev, “A local large deviation principle for inhomogeneous birth-death processes”, Problems Inform. Transmission, 54:3 (2018), 263–280  mathnet  crossref  isi  elib
    13. A. A. Mogul'skiǐ, “The extended large deviation principle for a process with independent increments”, Siberian Math. J., 58:3 (2017), 515–524  mathnet  crossref  crossref  isi  elib  elib
    14. A. A. Mogul'skiǐ, “The large deviation principle for a compound Poisson process”, Siberian Adv. Math., 27:3 (2017), 160–186  mathnet  crossref  crossref  elib
    15. Bakhtin V., Sokal E., “the Kullback-Leibler Information Function For Infinite Measures”, Entropy, 18:12 (2016), 448  crossref  isi  scopus
    16. Huang G., Mandjes M., Spreij P., “Large Deviations For Markov-Modulated Diffusion Processes With Rapid Switching”, Stoch. Process. Their Appl., 126:6 (2016), 1785–1818  crossref  mathscinet  zmath  isi  scopus
    17. Artem V. Logachov, “The local principle of large deviations for solutions of Itô stochastic equations with quick drift”, J Math Sci, 218:1 (2016), 28  crossref
    18. Klebaner F.C., Logachov A.V., Mogulskii A.A., “Large Deviations For Processes on Half-Line”, Electron. Commun. Probab., 20 (2015), 75, 1–14  crossref  mathscinet  isi  scopus
    19. V. I. Bakhtin, “Spektralnyi potentsial, deistvie Kulbaka i printsip bolshikh uklonenii dlya konechno-additivnykh mer”, Tr. In-ta matem., 23:2 (2015), 11–23  mathnet
    20. A. A. Borovkov, A. A. Mogul'skiǐ, “Large deviation principles for sums of random vectors and the corresponding renewal functions in the inhomogeneous case”, Siberian Adv. Math., 25:4 (2015), 255–267  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:659
    Full-text PDF :171
    References:87
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025