Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2019, Volume 22, Number 2, Pages 106–133
DOI: https://doi.org/10.33048/mattrudy.2019.22.207
(Mi mt360)
 

This article is cited in 8 scientific papers (total in 8 papers)

Local theorems for arithmetic multidimensional compound renewal processes under Cramér's condition

A. A. Mogul'skiĭa, E. I. Prokopenkob

a Sobolev Institute of Mathematics, Novosibirsk, 630090 Russia
b Novosibirsk State University, Novosibirsk, 630090 Russia
Full-text PDF (308 kB) Citations (8)
References:
Abstract: We continue the study of compound renewal processes (c.r.p.) under Cramér's moment condition initiated in [2–10, 12–16]. We examine two types of arithmetic multidimensional c.r.p. Z(n)Z(n) and Y(n)Y(n), for which the random vector ξ=(τ,ζ)ξ=(τ,ζ) controlling these processes (τ>0τ>0 defines the distance between jumps, ζζ defines the value of jumps of the c.r.p.) has an arithmetic distribution and satisfies Cramér's moment condition. For these processes, we find the exact asymptotics in the local limit theorems for the probabilities
P(Z(n)=x),P(Y(n)=x)
in the Cramér zone of deviations for xZd (in [9, 10, 13–15], the analogous problem was solved for nonlattice c.r.p., where the vector ξ=(τ,ζ) has a nonlattice distribution).
Key words: compound renewal process, Cramér's condition, arithmetic distribution, renewal function, deviations function, large deviations, moderate large deviations, local limit theorem.
Funding agency Grant number
Russian Science Foundation 18-11-00129
The work was supported by the Russian Science Foundation (project 18-11-00129).
Received: 04.02.2019
Revised: 08.05.2019
Accepted: 10.06.2019
English version:
Siberian Advances in Mathematics, 2020, Volume 30, Issue 4, Pages 284–302
DOI: https://doi.org/10.1134/S1055134420040033
Bibliographic databases:
Document Type: Article
UDC: 519.214
Language: Russian
Citation: A. A. Mogul'skiǐ, E. I. Prokopenko, “Local theorems for arithmetic multidimensional compound renewal processes under Cramér's condition”, Mat. Tr., 22:2 (2019), 106–133; Siberian Adv. Math., 30:4 (2020), 284–302
Citation in format AMSBIB
\Bibitem{MogPro19}
\by A.~A.~Mogul'ski{\v\i}, E.~I.~Prokopenko
\paper Local theorems for arithmetic multidimensional compound renewal processes under Cram{\'e}r's condition
\jour Mat. Tr.
\yr 2019
\vol 22
\issue 2
\pages 106--133
\mathnet{http://mi.mathnet.ru/mt360}
\crossref{https://doi.org/10.33048/mattrudy.2019.22.207}
\transl
\jour Siberian Adv. Math.
\yr 2020
\vol 30
\issue 4
\pages 284--302
\crossref{https://doi.org/10.1134/S1055134420040033}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85095950703}
Linking options:
  • https://www.mathnet.ru/eng/mt360
  • https://www.mathnet.ru/eng/mt/v22/i2/p106
  • This publication is cited in the following 8 articles:
    1. G. A. Bakay, “Characterization of Large Deviation Probabilities for Regenerative Sequences”, Proc. Steklov Inst. Math., 316 (2022), 40–56  mathnet  crossref  crossref  mathscinet
    2. A. V. Logachov, A. A. Mogulskii, E. I. Prokopenko, “Large deviation principle for terminating multidimensional compound renewal processes with application to polymer pinning models”, Problems Inform. Transmission, 58:2 (2022), 144–159  mathnet  crossref  crossref
    3. G. A. Bakay, “Large deviations for a terminating compound renewal process”, Theory Probab. Appl., 66:2 (2021), 209–227  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. T. Konstantopoulos, A. V. Logachov, A. A. Mogulskii, S. G. Foss, “Limit theorems for the maximal path weight in a directed graph on the line with random weights of edges”, Problems Inform. Transmission, 57:2 (2021), 161–177  mathnet  crossref  crossref  isi
    5. A. Logachov, A. Mogulskii, E. Prokopenko, A. Yambartsev, “Local theorems for (multidimensional) additive functionals of semi-Markov chains”, Stoch. Process. Their Appl., 137 (2021), 149–166  crossref  mathscinet  isi  scopus
    6. A. A. Mogul'skiǐ, E. I. Prokopenko, “The Large Deviation Principle for Finite-Dimensional Distributions of Multidimensional Renewal Processes”, Sib. Adv. Math., 31:3 (2021), 188  crossref
    7. A. A. Mogulskii, E. I. Prokopenko, “Printsip bolshikh uklonenii dlya konechnomernykh raspredelenii mnogomernykh obobschennykh protsessov vosstanovleniya”, Matem. tr., 23:2 (2020), 148–176  mathnet  crossref
    8. A. V. Logachev, A. A. Mogulskii, “Lokalnye teoremy dlya konechnomernykh priraschenii arifmeticheskikh mnogomernykh obobschennykh protsessov vosstanovleniya pri vypolnenii usloviya Kramera”, Sib. elektron. matem. izv., 17 (2020), 1766–1786  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:433
    Full-text PDF :195
    References:54
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025