Abstract:
Let (ξ(i),η(i))∈Rd+1, i∈N, be
independent and identically distributed random vectors, let ξ(i)∈Rd be random vectors, let η(i) be improper nonnegative random
variables, and let P(η(i)=+∞)∈(0,1). It is assumed
that the distribution of the vector (ξ(1),η(1)) subject to
{η(1)<+∞} satisfies the Cramér condition. By a terminating
compound renewal process we mean the process ZT=∑NTk=1ξ(k),
where NT=max{k∈N:η(1)+⋯+η(k)⩽T} is
the renewal process corresponding to improper random variables η(1),η(2),…. We find precise asymptotics of the probabilities
P(ZT∈IΔT(x)) and P(ZT=x)
in the nonlattice and strongly arithmetic cases, respectively; here
IΔT(x)={y∈Rd:xj⩽yj<xj+ΔT,
j=1,…,d}, and ΔT is a positive function converging sufficiently
slowly to zero.
Keywords:
compound renewal process, large deviations, the Cramér condition, terminating renewal processes.
This work was supported by the Russian Science Foundation (grant 19-11-00111)
and carried out at the Steklov Mathematical Institute of Russian Academy of Sciences.
Citation:
G. A. Bakay, “Large deviations for a terminating compound renewal process”, Teor. Veroyatnost. i Primenen., 66:2 (2021), 261–283; Theory Probab. Appl., 66:2 (2021), 209–227
\Bibitem{Bak21}
\by G.~A.~Bakay
\paper Large deviations for a~terminating compound renewal process
\jour Teor. Veroyatnost. i Primenen.
\yr 2021
\vol 66
\issue 2
\pages 261--283
\mathnet{http://mi.mathnet.ru/tvp5342}
\crossref{https://doi.org/10.4213/tvp5342}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4466373}
\zmath{https://zbmath.org/?q=an:1470.60081}
\transl
\jour Theory Probab. Appl.
\yr 2021
\vol 66
\issue 2
\pages 209--227
\crossref{https://doi.org/10.1137/S0040585X97T990356}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000684185800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129654164}
Linking options:
https://www.mathnet.ru/eng/tvp5342
https://doi.org/10.4213/tvp5342
https://www.mathnet.ru/eng/tvp/v66/i2/p261
This publication is cited in the following 3 articles:
G. A. Bakai, “Bolshie ukloneniya momenta dostizheniya dalekogo nizhnego urovnya sluchainym bluzhdaniem v sluchainoi srede”, Diskret. matem., 35:4 (2023), 3–17
G. A. Bakay, “Characterization of Large Deviation Probabilities for Regenerative Sequences”, Proc. Steklov Inst. Math., 316 (2022), 40–56
A. V. Logachov, A. A. Mogulskii, E. I. Prokopenko, “Large deviation principle for terminating multidimensional compound renewal processes with application to polymer pinning models”, Problems Inform. Transmission, 58:2 (2022), 144–159