Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2021, Volume 66, Issue 2, Pages 261–283
DOI: https://doi.org/10.4213/tvp5342
(Mi tvp5342)
 

This article is cited in 3 scientific papers (total in 3 papers)

Large deviations for a terminating compound renewal process

G. A. Bakay

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (478 kB) Citations (3)
References:
Abstract: Let (ξ(i),η(i))Rd+1, iN, be independent and identically distributed random vectors, let ξ(i)Rd be random vectors, let η(i) be improper nonnegative random variables, and let P(η(i)=+)(0,1). It is assumed that the distribution of the vector (ξ(1),η(1)) subject to {η(1)<+} satisfies the Cramér condition. By a terminating compound renewal process we mean the process ZT=NTk=1ξ(k), where NT=max{kN:η(1)++η(k)T} is the renewal process corresponding to improper random variables η(1),η(2),. We find precise asymptotics of the probabilities P(ZTIΔT(x)) and P(ZT=x) in the nonlattice and strongly arithmetic cases, respectively; here IΔT(x)={yRd:xjyj<xj+ΔT, j=1,,d}, and ΔT is a positive function converging sufficiently slowly to zero.
Keywords: compound renewal process, large deviations, the Cramér condition, terminating renewal processes.
Funding agency Grant number
Russian Science Foundation 19-11-00111
This work was supported by the Russian Science Foundation (grant 19-11-00111) and carried out at the Steklov Mathematical Institute of Russian Academy of Sciences.
Received: 19.08.2019
Revised: 12.06.2020
Accepted: 26.07.2020
English version:
Theory of Probability and its Applications, 2021, Volume 66, Issue 2, Pages 209–227
DOI: https://doi.org/10.1137/S0040585X97T990356
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. A. Bakay, “Large deviations for a terminating compound renewal process”, Teor. Veroyatnost. i Primenen., 66:2 (2021), 261–283; Theory Probab. Appl., 66:2 (2021), 209–227
Citation in format AMSBIB
\Bibitem{Bak21}
\by G.~A.~Bakay
\paper Large deviations for a~terminating compound renewal process
\jour Teor. Veroyatnost. i Primenen.
\yr 2021
\vol 66
\issue 2
\pages 261--283
\mathnet{http://mi.mathnet.ru/tvp5342}
\crossref{https://doi.org/10.4213/tvp5342}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4466373}
\zmath{https://zbmath.org/?q=an:1470.60081}
\transl
\jour Theory Probab. Appl.
\yr 2021
\vol 66
\issue 2
\pages 209--227
\crossref{https://doi.org/10.1137/S0040585X97T990356}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000684185800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129654164}
Linking options:
  • https://www.mathnet.ru/eng/tvp5342
  • https://doi.org/10.4213/tvp5342
  • https://www.mathnet.ru/eng/tvp/v66/i2/p261
  • This publication is cited in the following 3 articles:
    1. G. A. Bakai, “Bolshie ukloneniya momenta dostizheniya dalekogo nizhnego urovnya sluchainym bluzhdaniem v sluchainoi srede”, Diskret. matem., 35:4 (2023), 3–17  mathnet  crossref
    2. G. A. Bakay, “Characterization of Large Deviation Probabilities for Regenerative Sequences”, Proc. Steklov Inst. Math., 316 (2022), 40–56  mathnet  crossref  crossref  mathscinet
    3. A. V. Logachov, A. A. Mogulskii, E. I. Prokopenko, “Large deviation principle for terminating multidimensional compound renewal processes with application to polymer pinning models”, Problems Inform. Transmission, 58:2 (2022), 144–159  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:377
    Full-text PDF :71
    References:52
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025