Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1995, Volume 186, Issue 2, Pages 197–219
DOI: https://doi.org/10.1070/SM1995v186n02ABEH000012
(Mi sm12)
 

This article is cited in 16 scientific papers (total in 16 papers)

On the continuity of the solutions of a class of non-local problems for an elliptic equation

A. K. Gushchina, V. P. Mikhailov

a Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: This paper is devoted to a study of the connection between the notion of an (n1)-dimensionally continuous (weak) solution for a non-local problem, which was earlier introduced by the authors, with the notion of a classical solution. Under natural suppositions on the operator entering the non-local condition, the continuity of the weak solution in the closure of the domain under consideration is proved for all arbitrary continuous boundary function. The notion of an (n1)-dimensionally continuous solution is convenient when studying the Fredholm property of the problem. In the previous paper of the authors tl.e Fredholm property in such a setting was proved for a wide class of non-local problems. When studying the uniqueness it is easier to deal with a classical solution. The main result of this paper enables one, in particular, to use simultaneously the advantages of both approaches: to apply the classical maximum principle in the proof of the uniqueness (and hence, by the Fredholm property, the existence) of a weak solution.
Received: 10.11.1994
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: Primary 35J25; Secondary 47F05, 47N20
Language: English
Original paper language: Russian
Citation: A. K. Gushchin, V. P. Mikhailov, “On the continuity of the solutions of a class of non-local problems for an elliptic equation”, Sb. Math., 186:2 (1995), 197–219
Citation in format AMSBIB
\Bibitem{GusMik95}
\by A.~K.~Gushchin, V.~P.~Mikhailov
\paper On the continuity of the~solutions of a~class of non-local problems for an~elliptic equation
\jour Sb. Math.
\yr 1995
\vol 186
\issue 2
\pages 197--219
\mathnet{http://mi.mathnet.ru/eng/sm12}
\crossref{https://doi.org/10.1070/SM1995v186n02ABEH000012}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1330589}
\zmath{https://zbmath.org/?q=an:0849.35025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RZ91900012}
Linking options:
  • https://www.mathnet.ru/eng/sm12
  • https://doi.org/10.1070/SM1995v186n02ABEH000012
  • https://www.mathnet.ru/eng/sm/v186/i2/p37
  • This publication is cited in the following 16 articles:
    1. Z. A. Nakhusheva, “Kraevye zadachi s integralnym smescheniem dlya modelnogo uravneniya ellipticheskogo tipa”, Vestnik KRAUNTs. Fiz.-mat. nauki, 32:3 (2020), 65–74  mathnet  crossref
    2. A. K. Gushchin, “The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation”, Sb. Math., 209:6 (2018), 823–839  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. A. K. Gushchin, “Lp-estimates for the nontangential maximal function of the solution to a second-order elliptic equation”, Sb. Math., 207:10 (2016), 1384–1409  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. Temur Jangveladze, Zurab Kiguradze, George Lobjanidze, “Variational Statement and Domain Decomposition Algorithms for Bitsadze-Samarskii Nonlocal Boundary Value Problem for Poisson’s Two-Dimensional Equation”, International Journal of Partial Differential Equations, 2014 (2014), 1  crossref  zmath
    5. V. P. Mikhailov, “O suschestvovanii granichnykh znachenii u reshenii ellipticheskikh uravnenii”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(30) (2013), 97–105  mathnet  crossref
    6. A. K. Guschin, “Lp-otsenki nekasatelnoi maksimalnoi funktsii dlya reshenii ellipticheskogo uravneniya vtorogo poryadka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(30) (2013), 53–69  mathnet  crossref
    7. A. K. Gushchin, “Lp-estimates for solutions of second-order elliptic equation Dirichlet problem”, Theoret. and Math. Phys., 174:2 (2013), 209–219  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    8. A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an Lp boundary function”, Sb. Math., 203:1 (2012), 1–27  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. A. K. Guschin, “Otsenki resheniya zadachi Dirikhle s granichnoi funktsiei iz Lp”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(22) (2011), 53–67  mathnet  crossref  elib
    10. Jangveladze T.A., Lobjanidze G.B., “On a Nonlocal Boundary Value Problem for a Fourth-Order Ordinary Differential Equation”, Differ. Equ., 47:2 (2011), 179–186  crossref  mathscinet  zmath  isi  elib
    11. P. L. Gurevich, “Elliptic problems with nonlocal boundary conditions and Feller semigroups”, Journal of Mathematical Sciences, 182:3 (2012), 255–440  mathnet  crossref  mathscinet  zmath
    12. Jangveladze T.A., Lobjanidze G.B., “On a variational statement of a nonlocal boundary value problem for a fourth-order ordinary differential equation”, Differ. Equ., 45:3 (2009), 335–343  crossref  mathscinet  zmath  isi  elib
    13. A. K. Gushchin, “A strengthening of the interior Hölder continuity property for solutions of the Dirichlet problem for a second-order elliptic equation”, Theoret. and Math. Phys., 157:3 (2008), 1655–1670  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. A. K. Gushchin, “A condition for the compactness of operators in a certain class and its application to the analysis of the solubility of non-local problems for elliptic equations”, Sb. Math., 193:5 (2002), 649–668  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    15. Gushchin, AK, “A condition for complete continuity of the operators arising in nonlocal problems for elliptic equations”, Doklady Mathematics, 62:1 (2000), 32  mathscinet  zmath  isi  elib
    16. A. K. Gushchin, “Some properties of the solutions of the Dirichlet problem for a second-order elliptic equation”, Sb. Math., 189:7 (1998), 1009–1045  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:483
    Russian version PDF:132
    English version PDF:28
    References:67
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025