Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 5, Pages 649–668
DOI: https://doi.org/10.1070/SM2002v193n05ABEH000649
(Mi sm649)
 

This article is cited in 20 scientific papers (total in 20 papers)

A condition for the compactness of operators in a certain class and its application to the analysis of the solubility of non-local problems for elliptic equations

A. K. Gushchin

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: A class of “integral” operators arising in the analysis of non-local problems in which the values of a solution at the boundary of the domain under consideration are expressed through its values at interior points is investigated. These operators are defined in terms of measures close to Carleson measures. A condition ensuring the complete continuity of such operators is found. This result enables one to complement and extend results on the Fredholm property of a broad class of non-local problems for a second-order elliptic equation.
Received: 28.12.2001
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: Primary 35J35; Secondary 47G10
Language: English
Original paper language: Russian
Citation: A. K. Gushchin, “A condition for the compactness of operators in a certain class and its application to the analysis of the solubility of non-local problems for elliptic equations”, Sb. Math., 193:5 (2002), 649–668
Citation in format AMSBIB
\Bibitem{Gus02}
\by A.~K.~Gushchin
\paper A condition for the~compactness of operators in a~certain class and its application
to the~analysis of the~solubility of non-local problems for elliptic equations
\jour Sb. Math.
\yr 2002
\vol 193
\issue 5
\pages 649--668
\mathnet{http://mi.mathnet.ru/eng/sm649}
\crossref{https://doi.org/10.1070/SM2002v193n05ABEH000649}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1918245}
\zmath{https://zbmath.org/?q=an:1085.35058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178245000002}
\elib{https://elibrary.ru/item.asp?id=13395825}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036621506}
Linking options:
  • https://www.mathnet.ru/eng/sm649
  • https://doi.org/10.1070/SM2002v193n05ABEH000649
  • https://www.mathnet.ru/eng/sm/v193/i5/p17
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:667
    Russian version PDF:242
    English version PDF:23
    References:160
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025