Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 10, Pages 1384–1409
DOI: https://doi.org/10.1070/SM8698
(Mi sm8698)
 

This article is cited in 14 scientific papers (total in 14 papers)

Lp-estimates for the nontangential maximal function of the solution to a second-order elliptic equation

A. K. Gushchin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: The paper is concerned with the properties of the solution to a Dirichlet problem for a homogeneous second-order elliptic equation with Lp-boundary function, p>1. The same conditions are imposed on the coefficients of the equation and the boundary of the bounded domain as were used to establish the solvability of this problem. The Lp-norm of the nontangential maximal function is estimated in terms of the Lp-norm of the boundary value. This result depends on a new estimate, proved below, for the nontangential maximal function in terms of an analogue of the Lusin area integral.
Bibliography: 31 titles.
Keywords: elliptic equation, Dirichlet problem, nontangential maximal function.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work was supported by the Russian Science Foundation (project no. 14-50-00005).
Received: 11.03.2016 and 21.06.2016
Bibliographic databases:
Document Type: Article
UDC: 517.956.223
MSC: Primary 35J25; Secondary 35J67
Language: English
Original paper language: Russian
Citation: A. K. Gushchin, “Lp-estimates for the nontangential maximal function of the solution to a second-order elliptic equation”, Sb. Math., 207:10 (2016), 1384–1409
Citation in format AMSBIB
\Bibitem{Gus16}
\by A.~K.~Gushchin
\paper $L_p$-estimates for the nontangential maximal function of the solution to a~second-order elliptic equation
\jour Sb. Math.
\yr 2016
\vol 207
\issue 10
\pages 1384--1409
\mathnet{http://mi.mathnet.ru/eng/sm8698}
\crossref{https://doi.org/10.1070/SM8698}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588970}
\zmath{https://zbmath.org/?q=an:1375.35141}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207.1384G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391848500002}
\elib{https://elibrary.ru/item.asp?id=27350035}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85007415533}
Linking options:
  • https://www.mathnet.ru/eng/sm8698
  • https://doi.org/10.1070/SM8698
  • https://www.mathnet.ru/eng/sm/v207/i10/p28
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:755
    Russian version PDF:94
    English version PDF:26
    References:106
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025