Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 10, Pages 1363–1383
DOI: https://doi.org/10.1070/SM8720
(Mi sm8720)
 

This article is cited in 3 scientific papers (total in 3 papers)

Local Petrovskii lacunas close to parabolic singular points of the wavefronts of strictly hyperbolic partial differential equations

V. A. Vassilievab

a National Research University "Higher School of Economics" (HSE), Moscow
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: We enumerate the local Petrovskii lacunas (that is, the domains of local regularity of the principal fundamental solutions of strictly hyperbolic PDEs with constant coefficients in RN) close to parabolic singular points of their wavefronts (that is, at the points of types P18, P28, ±X9, X19, X29, J110 and J310). These points form the next most difficult family of classes in the natural classification of singular points after the so-called simple singularities Ak, Dk, E6, E7 and E8, which have been investigated previously.
Also we present a computer program which counts the topologically distinct morsifications of critical points of smooth functions, and hence also the local components of the complement of a generic wavefront at its singular points.
Bibliography: 22 titles.
Keywords: wavefront, lacuna, hyperbolic operator, sharpness, morsification, Petrovskii cycle, Petrovskii criterion.
Funding agency Grant number
Russian Science Foundation 16-11-10316
Research was supported by a Russian Science Foundation grant (project no. 16-11-10316).
Received: 20.04.2016 and 30.06.2016
Bibliographic databases:
Document Type: Article
UDC: 517.955+515.16
MSC: Primary 35L30, 58G17; Secondary 38K40
Language: English
Original paper language: Russian
Citation: V. A. Vassiliev, “Local Petrovskii lacunas close to parabolic singular points of the wavefronts of strictly hyperbolic partial differential equations”, Sb. Math., 207:10 (2016), 1363–1383
Citation in format AMSBIB
\Bibitem{Vas16}
\by V.~A.~Vassiliev
\paper Local Petrovskii lacunas close to parabolic singular points of the wavefronts of~strictly hyperbolic partial differential equations
\jour Sb. Math.
\yr 2016
\vol 207
\issue 10
\pages 1363--1383
\mathnet{http://mi.mathnet.ru/eng/sm8720}
\crossref{https://doi.org/10.1070/SM8720}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588969}
\zmath{https://zbmath.org/?q=an:1356.35014}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207.1363V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391848500001}
\elib{https://elibrary.ru/item.asp?id=27350032}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85007453511}
Linking options:
  • https://www.mathnet.ru/eng/sm8720
  • https://doi.org/10.1070/SM8720
  • https://www.mathnet.ru/eng/sm/v207/i10/p4
  • This publication is cited in the following 3 articles:
    1. V. A. Vassiliev, “Complements of discriminants of real parabolic function singularities”, Mosc. Math. J., 23:3 (2023), 401–432  mathnet
    2. Victor A. Vassiliev, “New Examples of Irreducible Local Diffusion of Hyperbolic PDE's”, SIGMA, 16 (2020), 009, 21 pp.  mathnet  crossref  mathscinet
    3. V. V. Zharinov, “Hamiltonian operators in differential algebras”, Theoret. and Math. Phys., 193:3 (2017), 1725–1736  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:737
    Russian version PDF:98
    English version PDF:28
    References:94
    First page:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025