Abstract:
The paper is concerned with the relationship between the nontangential maximal function of the solution to a Dirichlet problem with an Lp-boundary function, p>1, for a second-order elliptic equation and the Luzin area integral. The equation is considered in the self-adjoint form without lower-degree terms. The Lp-norm of the nontangential maximal function of the solution u is estimated from above and below in terms of the squared L2(∂Q)-norm of the area integral of v=|u|p/2. Here the coefficients of the equation need not be smooth in the domain.
Bibliography: 33 titles.
Citation:
A. K. Gushchin, “The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation”, Sb. Math., 209:6 (2018), 823–839
\Bibitem{Gus18}
\by A.~K.~Gushchin
\paper The Luzin area integral and the nontangential maximal function for solutions to a~second-order elliptic equation
\jour Sb. Math.
\yr 2018
\vol 209
\issue 6
\pages 823--839
\mathnet{http://mi.mathnet.ru/eng/sm8980}
\crossref{https://doi.org/10.1070/SM8980}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3807905}
\zmath{https://zbmath.org/?q=an:1402.35100}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..823G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000441840600003}
\elib{https://elibrary.ru/item.asp?id=34940684}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052380315}
Linking options:
https://www.mathnet.ru/eng/sm8980
https://doi.org/10.1070/SM8980
https://www.mathnet.ru/eng/sm/v209/i6/p47
This publication is cited in the following 7 articles: