Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 157, Number 3, Pages 345–363
DOI: https://doi.org/10.4213/tmf6284
(Mi tmf6284)
 

This article is cited in 12 scientific papers (total in 12 papers)

A strengthening of the interior Hölder continuity property for solutions of the Dirichlet problem for a second-order elliptic equation

A. K. Gushchin

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: The classical solution of the Dirichlet problem with a continuous boundary function for a linear elliptic equation with Hölder continuous coefficients and right-hand side satisfies the interior Schauder estimates describing the possible increase of the solution smoothness characteristics as the boundary is approached, namely, of the solution derivatives and their difference ratios in the corresponding Hölder norm. We prove similar assertions for the generalized solution with some other smoothness characteristics. In contrast to the interior Schauder estimates for classical solutions, our established estimates for the differential characteristics imply the continuity of the generalized solution in a sense natural for the problem (in the sense of (n1)-dimensional continuity) up to the boundary of the domain in question. We state the global properties in terms of the boundedness of the integrals of the square of the difference between the solution values at different points with respect to especially normalized measures in a certain class.
Keywords: elliptic equation, smoothness of solution, function space.
Received: 03.04.2008
English version:
Theoretical and Mathematical Physics, 2008, Volume 157, Issue 3, Pages 1655–1670
DOI: https://doi.org/10.1007/s11232-008-0138-0
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. K. Gushchin, “A strengthening of the interior Hölder continuity property for solutions of the Dirichlet problem for a second-order elliptic equation”, TMF, 157:3 (2008), 345–363; Theoret. and Math. Phys., 157:3 (2008), 1655–1670
Citation in format AMSBIB
\Bibitem{Gus08}
\by A.~K.~Gushchin
\paper A~ strengthening of the~interior H\"older continuity property for solutions of the~Dirichlet problem for a~second-order elliptic equation
\jour TMF
\yr 2008
\vol 157
\issue 3
\pages 345--363
\mathnet{http://mi.mathnet.ru/tmf6284}
\crossref{https://doi.org/10.4213/tmf6284}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2499641}
\zmath{https://zbmath.org/?q=an:1155.35325}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...157.1655G}
\elib{https://elibrary.ru/item.asp?id=13590338}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 157
\issue 3
\pages 1655--1670
\crossref{https://doi.org/10.1007/s11232-008-0138-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262485800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-58449108620}
Linking options:
  • https://www.mathnet.ru/eng/tmf6284
  • https://doi.org/10.4213/tmf6284
  • https://www.mathnet.ru/eng/tmf/v157/i3/p345
  • This publication is cited in the following 12 articles:
    1. A. G. Losev, E. A. Mazepa, “Asymptotic behavior of solutions of the Dirichlet problem for the Poisson equation on model Riemannian manifolds”, Sib. elektron. matem. izv., 19:1 (2022), 66–80  mathnet  crossref  mathscinet
    2. K. A. Bliznyuk, E. A. Mazepa, “Kraevye i vneshnie kraevye zadachi dlya uravneniya Puassona na nekompaktnykh rimanovykh mnogoobraziyakh”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 28 yanvarya – 2 fevralya 2021 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 207, VINITI RAN, M., 2022, 3–9  mathnet  crossref
    3. A. K. Gushchin, “On some properties of elliptic partial differential equation solutions”, Int. J. Mod. Phys. A, 37:20 (2022), 2243002–9  mathnet  crossref
    4. A. K. Gushchin, “The boundary values of solutions of an elliptic equation”, Sb. Math., 210:12 (2019), 1724–1752  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    5. A. K. Gushchin, “On the Existence of L2 Boundary Values of Solutions to an Elliptic Equation”, Proc. Steklov Inst. Math., 306 (2019), 47–65  mathnet  crossref  crossref  mathscinet  isi  elib
    6. A. K. Gushchin, “A criterion for the existence of Lp boundary values of solutions to an elliptic equation”, Proc. Steklov Inst. Math., 301 (2018), 44–64  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    7. A. K. Guschin, “O zadache Dirikhle dlya ellipticheskogo uravneniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 19:1 (2015), 19–43  mathnet  crossref  zmath  elib
    8. A. K. Gushchin, “Lp-estimates for solutions of second-order elliptic equation Dirichlet problem”, Theoret. and Math. Phys., 174:2 (2013), 209–219  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    9. A. K. Guschin, “Lp-otsenki nekasatelnoi maksimalnoi funktsii dlya reshenii ellipticheskogo uravneniya vtorogo poryadka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(30) (2013), 53–69  mathnet  crossref
    10. A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an Lp boundary function”, Sb. Math., 203:1 (2012), 1–27  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. A. K. Guschin, “Otsenki resheniya zadachi Dirikhle s granichnoi funktsiei iz Lp”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(22) (2011), 53–67  mathnet  crossref  elib
    12. Gushchin A.K., “Solvability of the Dirichlet problem for a second-order elliptic equation with a boundary function from Lp”, Dokl. Math., 83:2 (2011), 219–221  crossref  mathscinet  zmath  isi  elib  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:728
    Full-text PDF :243
    References:104
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025