Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 1, Pages 1–27
DOI: https://doi.org/10.1070/SM2012v203n01ABEH004211
(Mi sm7825)
 

This article is cited in 25 scientific papers (total in 25 papers)

The Dirichlet problem for a second-order elliptic equation with an Lp boundary function

A. K. Gushchin

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We consider a Dirichlet problem in which the boundary value of a solution is understood as the Lp-limit, p>1, of traces of this solution on surfaces ‘parallel’ to the boundary. We suggest a setting of this problem which (in contrast to the notion of solution in Wp,loc1) enables us to study the solvability of the problem without making smoothness assumptions on the coefficients inside the domain. In particular, for an equation in selfadjoint form without lower-order terms, under the same conditions as those used for p=2, we prove unique solvability and establish a bound for an analogue of the area integral.
Bibliography: 37 titles.
Keywords: elliptic equation, Dirichlet problem, boundary value.
Received: 25.11.2010 and 07.04.2011
Bibliographic databases:
Document Type: Article
UDC: 517.956.223
MSC: 35J25
Language: English
Original paper language: Russian
Citation: A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an Lp boundary function”, Sb. Math., 203:1 (2012), 1–27
Citation in format AMSBIB
\Bibitem{Gus12}
\by A.~K.~Gushchin
\paper The Dirichlet problem for a~second-order elliptic equation with an $L_p$ boundary function
\jour Sb. Math.
\yr 2012
\vol 203
\issue 1
\pages 1--27
\mathnet{http://mi.mathnet.ru/eng/sm7825}
\crossref{https://doi.org/10.1070/SM2012v203n01ABEH004211}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2933090}
\zmath{https://zbmath.org/?q=an:1244.35038}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203....1G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000301886900001}
\elib{https://elibrary.ru/item.asp?id=19066309}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84858764762}
Linking options:
  • https://www.mathnet.ru/eng/sm7825
  • https://doi.org/10.1070/SM2012v203n01ABEH004211
  • https://www.mathnet.ru/eng/sm/v203/i1/p3
  • This publication is cited in the following 25 articles:
    1. Omar Benslimane, Ahmed Aberqi, Jaouad Bennouna, “On some nonlinear anisotropic elliptic equations in anisotropic Orlicz space”, AJMS, 29:1 (2023), 29  crossref
    2. Omar Benslimane, Ahmed Aberqi, Jaouad Bennouna, “Study of some nonlinear elliptic equation with non-polynomial anisotropic growth”, Adv. Oper. Theory, 7:3 (2022)  crossref
    3. Benslimane O., Aberqi A., Bennouna J., “Existence and Uniqueness of Entropy Solution of a Nonlinear Elliptic Equation in Anisotropic Sobolev-Orlicz Space”, Rend. Circ. Mat. Palermo, 70:3 (2021), 1579–1608  crossref  mathscinet  isi
    4. V. I. Bogachev, T. I. Krasovitskii, S. V. Shaposhnikov, “On uniqueness of probability solutions of the Fokker-Planck-Kolmogorov equation”, Sb. Math., 212:6 (2021), 745–781  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    5. A. K. Gushchin, “Extensions of the space of continuous functions and embedding theorems”, Sb. Math., 211:11 (2020), 1551–1567  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. A. K. Gushchin, “The boundary values of solutions of an elliptic equation”, Sb. Math., 210:12 (2019), 1724–1752  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    7. A. K. Gushchin, “On the Existence of L2 Boundary Values of Solutions to an Elliptic Equation”, Proc. Steklov Inst. Math., 306 (2019), 47–65  mathnet  crossref  crossref  mathscinet  isi  elib
    8. F. Kh. Mukminov, “Existence of a Renormalized Solution to an Anisotropic Parabolic Problem for an Equation with Diffuse Measure”, Proc. Steklov Inst. Math., 306 (2019), 178–195  mathnet  crossref  crossref  mathscinet  isi  elib
    9. A. K. Gushchin, “The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation”, Sb. Math., 209:6 (2018), 823–839  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. A. K. Gushchin, “A criterion for the existence of Lp boundary values of solutions to an elliptic equation”, Proc. Steklov Inst. Math., 301 (2018), 44–64  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    11. N. A. Gusev, “On the definitions of boundary values of generalized solutions to an elliptic-type equation”, Proc. Steklov Inst. Math., 301 (2018), 39–43  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    12. V. I. Vlasov, “Hardy spaces, approximation issues and boundary value problems”, Eurasian Math. J., 9:3 (2018), 85–94  mathnet  crossref
    13. A. K. Gushchin, “Lp-estimates for the nontangential maximal function of the solution to a second-order elliptic equation”, Sb. Math., 207:10 (2016), 1384–1409  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. A. K. Guschin, “O zadache Dirikhle dlya ellipticheskogo uravneniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 19:1 (2015), 19–43  mathnet  crossref  zmath  elib
    15. A. K. Gushchin, “V.A. Steklov's work on equations of mathematical physics and development of his results in this field”, Proc. Steklov Inst. Math., 289 (2015), 134–151  mathnet  crossref  crossref  isi  elib
    16. L. M. Kozhevnikova, A. A. Khadzhi, “Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains”, Sb. Math., 206:8 (2015), 1123–1149  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    17. A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation”, Sb. Math., 206:10 (2015), 1410–1439  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    18. Dumanyan V.Zh., “On solvability of the Dirichlet problem with the boundary function in L2 for a second-order elliptic equation”, J. Contemp. Math. Anal., 50:4 (2015), 153–166  crossref  mathscinet  zmath  isi  scopus
    19. V. Zh. Dumanyan, “Solvability of the Dirichlet problem for second-order elliptic equations”, Theoret. and Math. Phys., 180:2 (2014), 917–931  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    20. A. K. Guschin, “Lp-otsenki nekasatelnoi maksimalnoi funktsii dlya reshenii ellipticheskogo uravneniya vtorogo poryadka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(30) (2013), 53–69  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1292
    Russian version PDF:288
    English version PDF:37
    References:175
    First page:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025