Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 180, Number 2, Pages 189–205
DOI: https://doi.org/10.4213/tmf8670
(Mi tmf8670)
 

This article is cited in 9 scientific papers (total in 9 papers)

Solvability of the Dirichlet problem for second-order elliptic equations

V. Zh. Dumanyan

Yerevan State University, Yerevan, Armenia
Full-text PDF (484 kB) Citations (9)
References:
Abstract: In our preceding papers, we obtained necessary and sufficient conditions for the existence of an (n1)-dimensionally continuous solution of the Dirichlet problem in a bounded domain QRn under natural restrictions imposed on the coefficients of the general second-order elliptic equation, but these conditions were formulated in terms of an auxiliary operator equation in a special Hilbert space and are difficult to verify. We here obtain necessary and sufficient conditions for the problem solvability in terms of the initial problem for a somewhat narrower class of right-hand sides of the equation and also prove that the obtained conditions become the solvability conditions in the space W12(Q) under the additional requirement that the boundary function belongs to the space W1/22(Q).
Keywords: Dirichlet problem, elliptic equation.
Received: 28.02.2014
Revised: 27.03.2014
English version:
Theoretical and Mathematical Physics, 2014, Volume 180, Issue 2, Pages 917–931
DOI: https://doi.org/10.1007/s11232-014-0188-4
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. Zh. Dumanyan, “Solvability of the Dirichlet problem for second-order elliptic equations”, TMF, 180:2 (2014), 189–205; Theoret. and Math. Phys., 180:2 (2014), 917–931
Citation in format AMSBIB
\Bibitem{Dum14}
\by V.~Zh.~Dumanyan
\paper Solvability of the~Dirichlet problem for second-order elliptic equations
\jour TMF
\yr 2014
\vol 180
\issue 2
\pages 189--205
\mathnet{http://mi.mathnet.ru/tmf8670}
\crossref{https://doi.org/10.4213/tmf8670}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344483}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...180..917D}
\elib{https://elibrary.ru/item.asp?id=22834514}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 180
\issue 2
\pages 917--931
\crossref{https://doi.org/10.1007/s11232-014-0188-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000341094400003}
\elib{https://elibrary.ru/item.asp?id=24561100}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906486356}
Linking options:
  • https://www.mathnet.ru/eng/tmf8670
  • https://doi.org/10.4213/tmf8670
  • https://www.mathnet.ru/eng/tmf/v180/i2/p189
  • This publication is cited in the following 9 articles:
    1. A. K. Gushchin, “On Dirichlet problem”, Theoret. and Math. Phys., 218:1 (2024), 51–67  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    2. A. K. Gushchin, “On some properties of elliptic partial differential equation solutions”, Int. J. Mod. Phys. A, 37:20 (2022), 2243002–9  mathnet  crossref
    3. A. K. Gushchin, “Extensions of the space of continuous functions and embedding theorems”, Sb. Math., 211:11 (2020), 1551–1567  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. A. K. Gushchin, “The boundary values of solutions of an elliptic equation”, Sb. Math., 210:12 (2019), 1724–1752  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    5. A. K. Gushchin, “On the Existence of L2 Boundary Values of Solutions to an Elliptic Equation”, Proc. Steklov Inst. Math., 306 (2019), 47–65  mathnet  crossref  crossref  mathscinet  isi  elib
    6. A. K. Gushchin, “The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation”, Sb. Math., 209:6 (2018), 823–839  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. A. K. Gushchin, “A criterion for the existence of Lp boundary values of solutions to an elliptic equation”, Proc. Steklov Inst. Math., 301 (2018), 44–64  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    8. A. K. Guschin, “O zadache Dirikhle dlya ellipticheskogo uravneniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 19:1 (2015), 19–43  mathnet  crossref  zmath  elib
    9. A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation”, Sb. Math., 206:10 (2015), 1410–1439  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:552
    Full-text PDF :195
    References:99
    First page:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025