Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2015, Volume 206, Issue 10, Pages 1410–1439
DOI: https://doi.org/10.1070/SM2015v206n10ABEH004500
(Mi sm8560)
 

This article is cited in 20 scientific papers (total in 20 papers)

Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation

A. K. Gushchin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: We consider a statement of the Dirichlet problem which generalizes the notions of classical and weak solutions, in which a solution belongs to the space of (n1)-dimensionally continuous functions with values in the space Lp. The property of (n1)-dimensional continuity is similar to the classical definition of uniform continuity; however, instead of the value of a function at a point, it looks at the trace of the function on measures in a special class, that is, elements of the space Lp with respect to these measures. Up to now, the problem in the statement under consideration has not been studied in sufficient detail. This relates first to the question of conditions on the right-hand side of the equation which ensure the solvability of the problem. The main results of the paper are devoted to just this question. We discuss the terms in which these conditions can be expressed. In addition, the way the behaviour of a solution near the boundary depends on the right-hand side is investigated.
Bibliography: 47 titles.
Keywords: elliptic equation, Dirichlet problem, boundary value.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: 18.06.2015
Bibliographic databases:
Document Type: Article
UDC: 517.956.223
MSC: Primary 35J25; Secondary 35J67
Language: English
Original paper language: Russian
Citation: A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation”, Sb. Math., 206:10 (2015), 1410–1439
Citation in format AMSBIB
\Bibitem{Gus15}
\by A.~K.~Gushchin
\paper Solvability of the Dirichlet problem for an~inhomogeneous second-order elliptic equation
\jour Sb. Math.
\yr 2015
\vol 206
\issue 10
\pages 1410--1439
\mathnet{http://mi.mathnet.ru/eng/sm8560}
\crossref{https://doi.org/10.1070/SM2015v206n10ABEH004500}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438564}
\zmath{https://zbmath.org/?q=an:1333.35035}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206.1410G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000367229400003}
\elib{https://elibrary.ru/item.asp?id=24850579}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953251623}
Linking options:
  • https://www.mathnet.ru/eng/sm8560
  • https://doi.org/10.1070/SM2015v206n10ABEH004500
  • https://www.mathnet.ru/eng/sm/v206/i10/p71
  • This publication is cited in the following 20 articles:
    1. A. K. Gushchin, “On Dirichlet problem”, Theoret. and Math. Phys., 218:1 (2024), 51–67  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    2. A. K. Gushchin, “On some properties of elliptic partial differential equation solutions”, Int. J. Mod. Phys. A, 37:20n21 (2022)  crossref
    3. Lan H.-y., Nieto J.J., “Solvability of Second-Order Uniformly Elliptic Inequalities Involving Demicontinuous Psi-Dissipative Operators and Applications to Generalized Population Models”, Eur. Phys. J. Plus, 136:2 (2021), 258  crossref  isi  scopus
    4. V. I. Bogachev, T. I. Krasovitskii, S. V. Shaposhnikov, “On uniqueness of probability solutions of the Fokker-Planck-Kolmogorov equation”, Sb. Math., 212:6 (2021), 745–781  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    5. A. K. Gushchin, “Extensions of the space of continuous functions and embedding theorems”, Sb. Math., 211:11 (2020), 1551–1567  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. L. M. Kozhevnikova, “Renormalized solutions of elliptic equations with variable exponents and general measure data”, Sb. Math., 211:12 (2020), 1737–1776  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. A. K. Gushchin, “The boundary values of solutions of an elliptic equation”, Sb. Math., 210:12 (2019), 1724–1752  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    8. A. K. Gushchin, “On the Existence of L2 Boundary Values of Solutions to an Elliptic Equation”, Proc. Steklov Inst. Math., 306 (2019), 47–65  mathnet  crossref  crossref  mathscinet  isi  elib
    9. A. K. Gushchin, “The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation”, Sb. Math., 209:6 (2018), 823–839  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. A. K. Gushchin, “A criterion for the existence of Lp boundary values of solutions to an elliptic equation”, Proc. Steklov Inst. Math., 301 (2018), 44–64  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    11. M. O. Katanaev, “Chern–Simons action and disclinations”, Proc. Steklov Inst. Math., 301 (2018), 114–133  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    12. Yu. N. Drozhzhinov, “Asymptotically homogeneous generalized functions and some of their applications”, Proc. Steklov Inst. Math., 301 (2018), 65–81  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    13. V. V. Zharinov, “Analysis in algebras and modules”, Proc. Steklov Inst. Math., 301 (2018), 98–108  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    14. N. A. Gusev, “On the definitions of boundary values of generalized solutions to an elliptic-type equation”, Proc. Steklov Inst. Math., 301 (2018), 39–43  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    15. A. S. Trushechkin, “Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional”, Proc. Steklov Inst. Math., 301 (2018), 262–271  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    16. V. V. Zharinov, “Analysis in differential algebras and modules”, Theoret. and Math. Phys., 196:1 (2018), 939–956  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    17. M. O. Katanaev, “Description of disclinations and dislocations by the Chern–Simons action for SO(3) connection”, Phys. Part. Nuclei, 49:5 (2018), 890–893  crossref  isi  scopus
    18. M. O. Katanaev, “Cosmological models with homogeneous and isotropic spatial sections”, Theoret. and Math. Phys., 191:2 (2017), 661–668  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    19. I. M. Petrushko, “On boundary and initial values of solutions of a second-order parabolic equation that degenerate on the domain boundary”, Dokl. Math., 96:3 (2017), 568–570  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    20. A. K. Gushchin, “Lp-estimates for the nontangential maximal function of the solution to a second-order elliptic equation”, Sb. Math., 207:10 (2016), 1384–1409  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:775
    Russian version PDF:488
    English version PDF:33
    References:81
    First page:23
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025