Аннотация:
We study SU(3)-invariant integrable models solvable by a nested algebraic Bethe ansatz. We obtain determinant representations for form factors of diagonal entries of the monodromy matrix. This representation can be used for the calculation of form factors and correlation functions of the XXXSU(3)-invariant Heisenberg chain.
The work of SP was supported in part by RFBR grant 11-01-00980-a, a grant of the Scientific Foundation of NRU, HSE 12-09-0064, and a grant of FAST, RF 14.740.11.0347. ER was supported by the ANR Project DIADEMS (Programme Blanc ANR SIMI1 2010-BLAN-0120-02). NAS was supported by the Program of RAS Basic Problems of Nonlinear Dynamics, RFBR-11-01-00440, RFBR-11-01-12037-ofi-m, SS-4612.2012.1.
Поступила в редакцию: 30.01.2013 Принята в печать: 28.03.2013
Реферативные базы данных:
Тип публикации:
Статья
Язык публикации: английский
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jsm4
Эта публикация цитируется в следующих 25 статьяx:
Jacopo De Nardis, Benjamin Doyon, Marko Medenjak, Miłosz Panfil, “Correlation functions and transport coefficients in generalised hydrodynamics”, J. Stat. Mech., 2022:1 (2022), 014002
Nikolay Gromov, Nicolò Primi, Paul Ryan, “Form-factors and complete basis of observables via separation of variables for higher rank spin chains”, J. High Energ. Phys., 2022:11 (2022)
Giuliano Niccoli, Hao Pei, Véronique Terras, “Correlation functions by separation of variables: the XXX spin chain”, SciPost Phys., 10:1 (2021)
Н. А. Славнов, “Производящая функция для скалярных произведений в алгебраическом анзаце Бете”, ТМФ, 204:3 (2020), 453–465; N. A. Slavnov, “Generating function for scalar products in the algebraic Bethe ansatz”, Theoret. and Math. Phys., 204:3 (2020), 1216–1226
Jean Michel Maillet, Giuliano Niccoli, Louis Vignoli, “On scalar products in higher rank quantum separation of variables”, SciPost Phys., 9:6 (2020)
Jean Michel Maillet, Giuliano Niccoli, Louis Vignoli, “Separation of variables bases for integrable glM|N and Hubbard models”, SciPost Phys., 9:4 (2020)
Jean Michel Maillet, Giuliano Niccoli, “Complete spectrum of quantum integrable lattice models associated to Y(gl(n)) by separation of variables”, SciPost Phys., 6:6 (2019)
Н. А. Славнов, “Детерминантные представления для скалярных произведений в алгебраическом анзаце Бете”, ТМФ, 197:3 (2018), 435–443; N. A. Slavnov, “Determinant representations for scalar products in the algebraic Bethe ansatz”, Theoret. and Math. Phys., 197:3 (2018), 1771–1778
Stanislav Pakuliak, Eric Ragoucy, Nikita Slavnov, “Nested Algebraic Bethe Ansatz in integrable models: recent results”, SciPost Phys. Lect. Notes, 2018
Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Scalar products and norm of Bethe vectors for integrable models based on Uq(^gln)”, SciPost Phys., 4 (2018), 6–30
Nikolay Gromov, Fedor Levkovich-Maslyuk, “New compact construction of eigenstates for supersymmetric spin chains”, J. High Energ. Phys., 2018:9 (2018)
Eric Ragoucy, “Bethe vectors and form factors for two-component bose gas”, Phys. Part. Nuclei Lett., 14:2 (2017), 336
Nikolay Gromov, Fedor Levkovich-Maslyuk, Grigory Sizov, “New construction of eigenstates and separation of variables for SU(N) quantum spin chains”, J. High Energ. Phys., 2017:9 (2017)
Kun Hao, Junpeng Cao, Guang-Liang Li, Wen-Li Yang, Kangjie Shi, Yupeng Wang, “A representation basis for the quantum integrable spin chain associated with the su(3) algebra”, J. High Energ. Phys., 2016:5 (2016)
Н. А. Славнов, “Одномерный двухкомпонентный бозе-газ и алгебраический анзац Бете”, ТМФ, 183:3 (2015), 409–433; N. A. Slavnov, “One-dimensional two-component Bose gas and the algebraic Bethe ansatz”, Theoret. and Math. Phys., 183:3 (2015), 800–821
Ovidiu I. Pâţu, Andreas Klümper, “Thermodynamics, density profiles, and correlation functions of the inhomogeneous one-dimensional spinor Bose gas”, Phys. Rev. A, 92:4 (2015)
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Zero modes method and form factors in quantum integrable models”, Nuclear Phys. B, 893 (2015), 459–481
С. З. Пакуляк, Э. Рагуси, Н. А. Славнов, “Скалярные произведения в моделях с GL(3) тригонометрической R-матрицей. Общий случай”, ТМФ, 180:1 (2014), 51–71; S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with the GL(3) trigonometric R-matrix: General case”, Theoret. and Math. Phys., 180:1 (2014), 795–814
С. З. Пакуляк, Э. Рагуси, Н. А. Славнов, “Детерминантные представления для формфакторов в квантовых интегрируемых моделях с GL(3)-инвариантной R-матрицей”, ТМФ, 181:3 (2014), 515–537; S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Determinant representations for form factors in quantum integrable models with the GL(3)-invariant R-matrix”, Theoret. and Math. Phys., 181:3 (2014), 1566–1584
С. З. Пакуляк, Э. Рагуси, Н. А. Славнов, “Скалярные произведения в моделях с GL(3) тригонометрической R-матрицей. Старший коэффициент”, ТМФ, 178:3 (2014), 363–389; S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with a GL(3) trigonometric R-matrix: Highest coefficient”, Theoret. and Math. Phys., 178:3 (2014), 314–335