The work of S.P. was supported in part by RFBR grant 14-01-00474-a. E.R. was supported by ANR Project DIADEMS (Programme Blanc ANR SIMI1 2010-BLAN-0120-02). N.A.S. was supported by the Program of RAS "Nonlinear Dynamics in Mathematics and Physics", RFBR-14-01-00860-a, RFBR-13-01-12405-ofi-m2.
Поступила в редакцию: 13.01.2015 Принята в печать: 09.02.2015
Реферативные базы данных:
Тип публикации:
Статья
Язык публикации: английский
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nphb1
Эта публикация цитируется в следующих 22 статьяx:
Neil J Robinson, Jean-Sébastien Caux, Robert M Konik, “Light cone dynamics in excitonic states of two-component Bose and Fermi gases”, J. Stat. Mech., 2020:1 (2020), 013103
Н. А. Славнов, “Производящая функция для скалярных произведений в алгебраическом анзаце Бете”, ТМФ, 204:3 (2020), 453–465; N. A. Slavnov, “Generating function for scalar products in the algebraic Bethe ansatz”, Theoret. and Math. Phys., 204:3 (2020), 1216–1226
N. A. Slavnov, “Introduction to the nested algebraic Bethe ansatz”, SciPost Phys. Lect. Notes, 19 (2020), 1–53
T. Čadež, S. Nemati, J.M.P. Carmelo, “One-particle spectral function singularities in a one-dimensional gas of spin-1/2 fermions with repulsive delta-function interaction”, Nuclear Physics B, 942 (2019), 45
Stanislav Pakuliak, Eric Ragoucy, Nikita Slavnov, “Nested Algebraic Bethe Ansatz in integrable models: recent results”, SciPost Phys. Lect. Notes, 2018
Andrew J A James, Robert M Konik, Philippe Lecheminant, Neil J Robinson, Alexei M Tsvelik, “Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods”, Rep. Prog. Phys., 81:4 (2018), 046002
Н. А. Славнов, “Детерминантные представления для скалярных произведений в алгебраическом анзаце Бете”, ТМФ, 197:3 (2018), 435–443; N. A. Slavnov, “Determinant representations for scalar products in the algebraic Bethe ansatz”, Theoret. and Math. Phys., 197:3 (2018), 1771–1778
A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov, “Scalar products of Bethe vectors in the models with gl(m|n) symmetry”, Nuclear Phys. B, 923 (2017), 277–311
J. Fuksa, N. A. Slavnov, “Form factors of local operators in supersymmetric quantum integrable models”, J. Stat. Mech., 2017, 43106–21
A. A. Hutsalyuk, A. N. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with gl(2|1) symmetry 2. Determinant representation”, J. Phys. A, 50:3 (2017), 34004–22
Nikolay Gromov, Fedor Levkovich-Maslyuk, Grigory Sizov, “New construction of eigenstates and separation of variables for SU(N) quantum spin chains”, J. High Energ. Phys., 2017:9 (2017)
Eric Ragoucy, “Bethe vectors and form factors for two-component bose gas”, Phys. Part. Nuclei Lett., 14:2 (2017), 336
A. Hustalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models”, Nuclear Phys. B, 911 (2016), 902–927
Karol K. Kozlowski, Eric Ragoucy, “Asymptotic behaviour of two-point functions in multi-species models”, Nuclear Physics B, 906 (2016), 241
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors of local operators in a one-dimensional two-component Bose gas”, J. Phys. A, 48:43 (2015), 435001 , 21 pp., arXiv: 1503.00546
O. I. Patu, A. Kluemper, “Thermodynamics, density profiles, and correlation functions of the inhomogeneous one-dimensional spinor Bose gas”, Phys. Rev. A, 92:4 (2015), 043631
Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors”, SIGMA, 11 (2015), 063, 20 pp.
Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “GL(3)-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators”, SIGMA, 11 (2015), 064, 18 pp.
Samuel Belliard, Rodrigo A. Pimenta, “Slavnov and Gaudin–Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain”, SIGMA, 11 (2015), 099, 12 pp.
Н. А. Славнов, “Одномерный двухкомпонентный бозе-газ и алгебраический анзац Бете”, ТМФ, 183:3 (2015), 409–433; N. A. Slavnov, “One-dimensional two-component Bose gas and the algebraic Bethe ansatz”, Theoret. and Math. Phys., 183:3 (2015), 800–821