Аннотация:
We consider a composite generalized quantum integrable model solvable by the nested algebraic Bethe ansatz. Using explicit formulas of the action of the monodromy matrix elements onto Bethe vectors in the GL(3)-based quantum integrable models we prove a formula for the Bethe vectors of composite model. We show that this representation is a particular case of general coproduct property of the weight functions (Bethe vectors) found in the theory of the deformed Knizhnik–Zamolodchikov equation.
The work of S.P. was supported in part by RFBR-Ukraine grant 14-01-90405-ukr-a. N.A.S. was supported by the Program of RAS "Nonlinear Dynamics in Mathematics and Physics" and by the grant RFBR-15-31-20484-mol_a_ved.
Поступила:18 февраля 2015 г.; в окончательном варианте 22 июля 2015 г.; опубликована 31 июля 2015 г.
Образец цитирования:
Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “GL(3)-Based Quantum Integrable Composite Models. I. Bethe Vectors”, SIGMA, 11 (2015), 063, 20 pp.
Niccoli G. Pei H. Terras V., “Correlation Functions By Separation of Variables: the Xxx Spin Chain”, SciPost Phys., 10:1 (2021), 006
J. M. Maillet, G. Niccoli, L. Vignoli, “Separation of variables bases for integrable gl(m vertical bar N) and Hubbard models”, SciPost Phys., 9:4 (2020), 060
J. M. Maillet, G. Niccoli, L. Vignoli, “On scalar products in higher rank quantum separation of variables”, SciPost Phys., 9:6 (2020), 086
J. M. Maillet, G. Niccoli, “Complete spectrum of quantum integrable lattice models associated to u-q(gl(n))over-bar)over cap> by separation of variables”, J. Phys. A-Math. Theor., 52:31 (2019), 315203
J. M. Maillet, G. Niccoli, “Complete spectrum of quantum integrable lattice models associated to Y (gl(n)) by separation of variables”, SciPost Phys., 6:6 (2019), 071
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products and norm of Bethe vectors for integrable models based on Uq(^gln)”, SciPost Phys., 4:1 (2018), 006
N. Gromov, F. Levkovich-Maslyuk, “New compact construction of eigenstates for supersymmetric spin chains”, J. High Energy Phys., 2018, no. 9, 085
Stanislav Pakuliak, Eric Ragoucy, Nikita Slavnov, “Nested Algebraic Bethe Ansatz in integrable models: recent results”, SciPost Phys. Lect. Notes, 2018
Jan Fuksa, “Bethe Vectors for Composite Models with gl(2|1) and gl(1|2) Supersymmetry”, SIGMA, 13 (2017), 015, 17 pp.
J. Fuksa, N. A. Slavnov, “Form factors of local operators in supersymmetric quantum integrable models”, J. Stat. Mech.-Theory Exp., 2017, 043106
F. Goehmann, M. Karbach, A. Kluemper, K. K. Kozlowski, J. Suzuki, “Thermal form-factor approach to dynamical correlation functions of integrable lattice models”, J. Stat. Mech.-Theory Exp., 2017, 113106
N. Gromov, F. Levkovich-Maslyuk, G. Sizov, “New construction of eigenstates and separation of variables for SU(N) quantum spin chains”, J. High Energy Phys., 2017, no. 9, 111
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in the models with gl(m|n) symmetry”, Nucl. Phys. B, 923 (2017), 277–311
E. Ragoucy, “Bethe vectors and form factors for two-component Bose gas”, Phys. Part. Nuclei Lett., 14:2 (2017), 336–340
H. M. Babujian, A. Foerster, M. Karowski, “Bethe ansatz and exact form factors of the O(N) Gross–Neveu model”, J. High Energy Phys., 2016, no. 2, 042
K. K. Kozlowski, E. Ragoucy, “Asymptotic behaviour of two-point functions in multi-species models”, Nucl. Phys. B, 906 (2016), 241–288
Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “GL(3)-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators”, SIGMA, 11 (2015), 064, 18 pp.
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors of local operators in a one-dimensional two-component Bose gas”, J. Phys. A-Math. Theor., 48:43 (2015), 435001
O. I. Patu, A. Kluemper, “Thermodynamics, density profiles, and correlation functions of the inhomogeneous one-dimensional spinor Bose gas”, Phys. Rev. A, 92:4 (2015), 043631