Abstract:
We apply the nested algebraic Bethe ansatz to a model of a one-dimensional two-component Bose gas with a δδ-function repulsive interaction. Using a lattice approximation of the LL-operator, we find the Bethe vectors of the model in the continuum limit. We also obtain a series representation for the monodromy matrix of the model in terms of Bose fields. This representation allows studying an asymptotic expansion of the monodromy matrix over the spectral parameter.
Citation:
N. A. Slavnov, “One-dimensional two-component Bose gas and the algebraic Bethe ansatz”, TMF, 183:3 (2015), 409–433; Theoret. and Math. Phys., 183:3 (2015), 800–821
This publication is cited in the following 8 articles:
N. A. Slavnov, “Introduction to the nested algebraic Bethe ansatz”, SciPost Phys. Lect. Notes, 19 (2020), 1–53
O. I. Patu, “Correlation functions of one-dimensional strongly interacting two-component gases”, Phys. Rev. A, 100:6 (2019), 063635
A. Liashyk, N. A. Slavnov, “On Bethe vectors in gl3-invariant integrable models”, J. High Energy Phys., 2018, no. 6, 018, 31 pp.
Stanislav Pakuliak, Eric Ragoucy, Nikita Slavnov, “Nested Algebraic Bethe Ansatz in integrable models: recent results”, SciPost Phys. Lect. Notes, 2018
J. Fuksa, N. A. Slavnov, “Form factors of local operators in supersymmetric quantum integrable models”, J. Stat. Mech.-Theory Exp., 2017, 043106
K. K. Kozlowski, E. Ragoucy, “Asymptotic behaviour of two-point functions in multi-species models”, Nucl. Phys. B, 906 (2016), 241–288
O. I. Pâţu, A. Klümper, “Thermodynamics, density profiles, and correlation functions of the inhomogeneous one-dimensional spinor Bose gas”, Phys. Rev. A, 92 (2015), 043631
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors of local operators in a one-dimensional two-component Bose gas”, J. Phys. A, 48:43 (2015), 435001, 21 pp.