Abstract:
We consider the problem of excitation energy transfer in quantum many-particle systems with a dipole interaction. The considered exciton transfer mechanism is based on quantum interference. We show that by a special choice of interaction parameters, an enhancement of the exciton transfer to a sink and suppression of the transfer to alternative sinks can be achieved. The enhancement is proportional to the number of particles in the system. We use the quantum stochastic limit method to describe the dynamics. We indicate possible applications of the proposed mechanism to quantum processes in photosynthesis.
Keywords:
stochastic limit of quantum theory, dynamics of quantum many-particle systems, quantum transfer process.
Citation:
I. Ya. Aref'eva, I. V. Volovich, S. V. Kozyrev, “Stochastic limit method and interference in quantum many-particle systems”, TMF, 183:3 (2015), 388–408; Theoret. and Math. Phys., 183:3 (2015), 782–799
This publication is cited in the following 19 articles:
Jorge R. Bolaños-Servín, Josué I. Rios-Cangas, Alfredo Uribe, “The Fast Recurrent Subspace on an N-Level Quantum Energy Transport Model”, Open Syst. Inf. Dyn., 31:01 (2024)
G. M. Timofeev, A. S. Trushechkin, “Hamiltonian of mean force in the weak-coupling and high-temperature approximations and refined quantum master equations”, Int. J. Mod. Phys. A, 37:20 (2022), 2243021–24
A. S. Trushechkin, M. Merkli, J. D. Cresser, J. Anders, “Open quantum system dynamics and the mean force Gibbs state”, AVS Quantum Sci., 4 (2022), 12301–23
A. Hernandez-Cervantes, R. Quezada, “Stationary states of weak coupling limit-type Markov generators and quantum transport models”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 23:1 (2020), 2050003
J. R. Bolanos-Servin, R. Quezada, J. I. Rios-Cangas, “Transition maps between Hilbert subspaces and quantum energy transport”, Open Syst. Inf. Dyn., 27:3 (2020), 2050013
S. V. Kozyrev, “Model of Vibrons in Quantum Photosynthesis as an Analog of a Model of Laser”, Proc. Steklov Inst. Math., 306 (2019), 145–156
A. S. Trushechkin, “Dynamics of Reservoir Observables within the Zwanzig Projection Operator Method in the Theory of Open Quantum Systems”, Proc. Steklov Inst. Math., 306 (2019), 257–270
A. Trushechkin, “Calculation of coherences in forster and modified redfield theories of excitation energy transfer”, J. Chem. Phys., 151:7 (2019), 074101
S. V. Kozyrev, “Quantum transport in degenerate systems”, Proc. Steklov Inst. Math., 301 (2018), 134–143
Yu. N. Drozhzhinov, “Asymptotically homogeneous generalized functions and some of their applications”, Proc. Steklov Inst. Math., 301 (2018), 65–81
A. S. Trushechkin, “Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional”, Proc. Steklov Inst. Math., 301 (2018), 262–271
J. C. Garcia, S. Gliouez, F. Guerrero-Poblete, R. Quezada, “Entangled and dark stationary states of excitation energy transport models in quantum many-particle systems and photosynthesis”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 21:3 (2018), 1850018
S. V. Kozyrev, I. V. Volovich, Trends in Biomathematics: Modeling, Optimization and Computational Problems, 2018, 13
D. S. Ageev, I. Ya. Aref'eva, “Waking and scrambling in holographic heating up”, Theoret. and Math. Phys., 193:1 (2017), 1534–1546
S. V. Kozyrev, A. A. Mironov, A. E. Teretenkov, I. V. Volovich, “Flows in non-equilibrium quantum systems and quantum photosynthesis”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 20:4 (2017), 1750021
V. Zh. Sakbaev, I. V. Volovich, “Self-adjoint approximations of the degenerate Schrodinger operator”, P-Adic Numbers Ultrametric Anal. Appl., 9:1 (2017), 39–52
A. S. Trushechkin, “On general production of entropy in open Markov quantum systems”, J. Math. Sci. (N. Y.), 241:2 (2019), 191–209
A. S. Trushechkin, I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks”, EPL, 113:3 (2016), 30005, 6 pp.
I. V. Volovich, S. V. Kozyrev, “Manipulation of states of a degenerate quantum system”, Proc. Steklov Inst. Math., 294 (2016), 241–251