Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 183, Number 3, Pages 388–408
DOI: https://doi.org/10.4213/tmf8828
(Mi tmf8828)
 

This article is cited in 19 scientific papers (total in 19 papers)

Stochastic limit method and interference in quantum many-particle systems

I. Ya. Aref'eva, I. V. Volovich, S. V. Kozyrev

Steklov Mathematical Institute of RAS, Moscow, Russia
References:
Abstract: We consider the problem of excitation energy transfer in quantum many-particle systems with a dipole interaction. The considered exciton transfer mechanism is based on quantum interference. We show that by a special choice of interaction parameters, an enhancement of the exciton transfer to a sink and suppression of the transfer to alternative sinks can be achieved. The enhancement is proportional to the number of particles in the system. We use the quantum stochastic limit method to describe the dynamics. We indicate possible applications of the proposed mechanism to quantum processes in photosynthesis.
Keywords: stochastic limit of quantum theory, dynamics of quantum many-particle systems, quantum transfer process.
Funding agency Grant number
Russian Science Foundation 14-11-00687
Received: 25.11.2014
English version:
Theoretical and Mathematical Physics, 2015, Volume 183, Issue 3, Pages 782–799
DOI: https://doi.org/10.1007/s11232-015-0296-9
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. Ya. Aref'eva, I. V. Volovich, S. V. Kozyrev, “Stochastic limit method and interference in quantum many-particle systems”, TMF, 183:3 (2015), 388–408; Theoret. and Math. Phys., 183:3 (2015), 782–799
Citation in format AMSBIB
\Bibitem{AreVolKoz15}
\by I.~Ya.~Aref'eva, I.~V.~Volovich, S.~V.~Kozyrev
\paper Stochastic limit method and interference in quantum many-particle systems
\jour TMF
\yr 2015
\vol 183
\issue 3
\pages 388--408
\mathnet{http://mi.mathnet.ru/tmf8828}
\crossref{https://doi.org/10.4213/tmf8828}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3399653}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...183..782A}
\elib{https://elibrary.ru/item.asp?id=23780233}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 183
\issue 3
\pages 782--799
\crossref{https://doi.org/10.1007/s11232-015-0296-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356934400004}
\elib{https://elibrary.ru/item.asp?id=24052067}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84932650634}
Linking options:
  • https://www.mathnet.ru/eng/tmf8828
  • https://doi.org/10.4213/tmf8828
  • https://www.mathnet.ru/eng/tmf/v183/i3/p388
  • Related presentations:
    This publication is cited in the following 19 articles:
    1. Jorge R. Bolaños-Servín, Josué I. Rios-Cangas, Alfredo Uribe, “The Fast Recurrent Subspace on an N-Level Quantum Energy Transport Model”, Open Syst. Inf. Dyn., 31:01 (2024)  crossref
    2. G. M. Timofeev, A. S. Trushechkin, “Hamiltonian of mean force in the weak-coupling and high-temperature approximations and refined quantum master equations”, Int. J. Mod. Phys. A, 37:20 (2022), 2243021–24  mathnet  crossref
    3. A. S. Trushechkin, M. Merkli, J. D. Cresser, J. Anders, “Open quantum system dynamics and the mean force Gibbs state”, AVS Quantum Sci., 4 (2022), 12301–23  mathnet  crossref  isi  scopus
    4. A. Hernandez-Cervantes, R. Quezada, “Stationary states of weak coupling limit-type Markov generators and quantum transport models”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 23:1 (2020), 2050003  crossref  mathscinet  isi
    5. J. R. Bolanos-Servin, R. Quezada, J. I. Rios-Cangas, “Transition maps between Hilbert subspaces and quantum energy transport”, Open Syst. Inf. Dyn., 27:3 (2020), 2050013  crossref  mathscinet  isi
    6. S. V. Kozyrev, “Model of Vibrons in Quantum Photosynthesis as an Analog of a Model of Laser”, Proc. Steklov Inst. Math., 306 (2019), 145–156  mathnet  crossref  crossref  mathscinet  isi  elib
    7. A. S. Trushechkin, “Dynamics of Reservoir Observables within the Zwanzig Projection Operator Method in the Theory of Open Quantum Systems”, Proc. Steklov Inst. Math., 306 (2019), 257–270  mathnet  crossref  crossref  mathscinet  isi  elib
    8. A. Trushechkin, “Calculation of coherences in forster and modified redfield theories of excitation energy transfer”, J. Chem. Phys., 151:7 (2019), 074101  crossref  isi
    9. S. V. Kozyrev, “Quantum transport in degenerate systems”, Proc. Steklov Inst. Math., 301 (2018), 134–143  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    10. Yu. N. Drozhzhinov, “Asymptotically homogeneous generalized functions and some of their applications”, Proc. Steklov Inst. Math., 301 (2018), 65–81  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    11. A. S. Trushechkin, “Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional”, Proc. Steklov Inst. Math., 301 (2018), 262–271  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    12. J. C. Garcia, S. Gliouez, F. Guerrero-Poblete, R. Quezada, “Entangled and dark stationary states of excitation energy transport models in quantum many-particle systems and photosynthesis”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 21:3 (2018), 1850018  crossref  mathscinet  zmath  isi  scopus
    13. S. V. Kozyrev, I. V. Volovich, Trends in Biomathematics: Modeling, Optimization and Computational Problems, 2018, 13  crossref
    14. D. S. Ageev, I. Ya. Aref'eva, “Waking and scrambling in holographic heating up”, Theoret. and Math. Phys., 193:1 (2017), 1534–1546  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    15. S. V. Kozyrev, A. A. Mironov, A. E. Teretenkov, I. V. Volovich, “Flows in non-equilibrium quantum systems and quantum photosynthesis”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 20:4 (2017), 1750021  crossref  mathscinet  zmath  isi  scopus
    16. V. Zh. Sakbaev, I. V. Volovich, “Self-adjoint approximations of the degenerate Schrodinger operator”, P-Adic Numbers Ultrametric Anal. Appl., 9:1 (2017), 39–52  crossref  mathscinet  zmath  isi  scopus
    17. A. S. Trushechkin, “On general production of entropy in open Markov quantum systems”, J. Math. Sci. (N. Y.), 241:2 (2019), 191–209  mathnet  mathnet  crossref
    18. A. S. Trushechkin, I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks”, EPL, 113:3 (2016), 30005, 6 pp.  mathnet  crossref  scopus
    19. I. V. Volovich, S. V. Kozyrev, “Manipulation of states of a degenerate quantum system”, Proc. Steklov Inst. Math., 294 (2016), 241–251  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:791
    Full-text PDF :218
    References:100
    First page:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025