Abstract:
We study quantum integrable models with the $GL(3)$ trigonometric $R$-matrix solvable by the nested algebraic Bethe ansatz and obtain an explicit representation for a scalar product of generic Bethe vectors in terms of a sum over partitions of Bethe parameters. This representation generalizes the known formula for scalar products in models with the $GL(3)$-invariant $R$-matrix.
Citation:
S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with the $GL(3)$ trigonometric $R$-matrix: General case”, TMF, 180:1 (2014), 51–71; Theoret. and Math. Phys., 180:1 (2014), 795–814
\Bibitem{PakRagSla14}
\by S.~Z.~Pakulyak, E.~Ragoucy, N.~A.~Slavnov
\paper Scalar products in models with the~$GL(3)$ trigonometric $R$-matrix: General case
\jour TMF
\yr 2014
\vol 180
\issue 1
\pages 51--71
\mathnet{http://mi.mathnet.ru/tmf8651}
\crossref{https://doi.org/10.4213/tmf8651}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1472013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...180..795P}
\elib{https://elibrary.ru/item.asp?id=21826697}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 180
\issue 1
\pages 795--814
\crossref{https://doi.org/10.1007/s11232-014-0180-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000340457900005}
\elib{https://elibrary.ru/item.asp?id=23979219}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84905658100}
Linking options:
https://www.mathnet.ru/eng/tmf8651
https://doi.org/10.4213/tmf8651
https://www.mathnet.ru/eng/tmf/v180/i1/p51
This publication is cited in the following 8 articles:
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products and norm of Bethe vectors for integrable models based on $U_q(\widehat{\mathfrak{gl}}_n)$”, SciPost Phys., 4:1 (2018), 006
Stanislav Pakuliak, Eric Ragoucy, Nikita Slavnov, “Nested Algebraic Bethe Ansatz in integrable models: recent results”, SciPost Phys. Lect. Notes, 2018
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{g}\mathfrak{l}(2|1)$ symmetry 2. Determinant representation”, J. Phys. A-Math. Theor., 50:3 (2017), 034004
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in the models with $\mathfrak{gl}(m|n)$ symmetry”, Nucl. Phys. B, 923 (2017), 277–311
Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Bethe vectors for models based on the super-Yangian $Y(gl(m|n))$”, J. Integrab. Syst., 2 (2017), 1–31
Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models”, SIGMA, 12 (2016), 099, 22 pp.
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with ${\mathfrak{gl}}(2| 1)$ symmetry 1. Super-analog of Reshetikhin formula”, J. Phys. A-Math. Theor., 49:45 (2016), 454005, 1–28
N. A. Slavnov, “Scalar products in $GL(3)$-based models with trigonometric $R$-matrix. Determinant representation”, J. Stat. Mech., 2015:3 (2015), 3019–25