Аннотация:
Описаны классы в пространстве непрерывных функций, для которых имеет место поточечная и равномерная сходимость операторов типа Лагранжа, построенных по решениям задачи Коши, и интерполяционных многочленов Лагранжа–Якоби L(αn,βn)n(F,cosθ). Получены достаточные условия равносходимости этих интерполяционных процессов.
Библиография: 22 наименования.
Образец цитирования:
А. Ю. Трынин, “Об операторах интерполирования по решениям задачи Коши и многочленах Лагранжа–Якоби”, Изв. РАН. Сер. матем., 75:6 (2011), 129–162; Izv. Math., 75:6 (2011), 1215–1248
V. N. Pasechnik, “Approximation of Continuous Functions by Classical Sincs and Values of Operators Cλ”, Comput. Math. and Math. Phys., 64:2 (2024), 206
В. Н. Пасечник, “Приближение непрерывных функций с помощью классических синков и значений операторов Cλ”, Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, 64:2 (2024), 220
A. Yu. Trynin, “Sufficient Conditions for Convergence of Generalized Sinc-Approximations on Segment”, J Math Sci, 255:4 (2021), 513
А. Ю. Трынин, “О равномерном приближении интерполяционными многочленами Лагранжа по матрице узлов Якоби L(αn,βn)n функций ограниченной вариации”, Изв. РАН. Сер. матем., 84:6 (2020), 197–222; A. Yu. Trynin, “On the uniform approximation of functions of bounded variation by Lagrange interpolation
polynomials with a matrix L(αn,βn)n of Jacobi nodes”, Izv. Math., 84:6 (2020), 1224–1249
A. Yu. Trynin, “Error Estimate for Uniform Approximation by Lagrange–Sturm–Liouville Processes”, J Math Sci, 247:6 (2020), 939
А. Ю. Трынин, “Равномерная сходимость процессов Лагранжа–Штурма–Лиувилля на одном функциональном классе”, Уфимск. матем. журн., 10:2 (2018), 93–108; A. Yu. Trynin, “Uniform convergence of Lagrange–Sturm–Liouville processes on one functional class”, Ufa Math. J., 10:2 (2018), 93–108
А. Ю. Трынин, “Сходимость процессов Лагранжа–Штурма–Лиувилля для непрерывных функций ограниченной вариации”, Владикавк. матем. журн., 20:4 (2018), 76–91
А. Ю. Трынин, “Достаточное условие сходимости процессов Лагранжа–Штурма–Лиувилля в терминах одностороннего модуля непрерывности”, Ж. вычисл. матем. и матем. физ., 58:11 (2018), 1780–1793; A. Yu. Trynin, “Sufficient condition for convergence of Lagrange–Sturm–Liouville processes in terms of one-sided modulus of continuity”, Comput. Math. Math. Phys., 58:11 (2018), 1716–1727
А. Ю. Трынин, “Приближение непрерывных на отрезке функций с помощью линейных комбинаций синков”, Изв. вузов. Матем., 2016, № 3, 72–81; A. Yu. Trynin, “Approximation of continuous on a segment functions with the help of linear combinations of sincs”, Russian Math. (Iz. VUZ), 60:3 (2016), 63–71
А. Ю. Трынин, “Необходимые и достаточные условия равномерной на отрезке синк-аппроксимации функций ограниченной вариации”, Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 16:3 (2016), 288–298
А. Ю. Трынин, “О необходимых и достаточных условиях сходимости синк-аппроксимаций”, Алгебра и анализ, 27:5 (2015), 170–194; A. Yu. Trynin, “On necessary and sufficient conditions for convergence of sinc-approximations”, St. Petersburg Math. J., 27:5 (2016), 825–840
А. Ю. Трынин, “О некоторых свойствах синк-аппроксимаций непрерывных на отрезке функций”, Уфимск. матем. журн., 7:4 (2015), 116–132; A. Yu. Trynin, “On some properties of sinc approximations of continuous functions on the interval”, Ufa Math. J., 7:4 (2015), 111–126