Алгебра и анализ
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Алгебра и анализ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Алгебра и анализ, 2007, том 19, выпуск 5, страницы 37–64 (Mi aa135)  

Эта публикация цитируется в 29 научных статьях (всего в 29 статьях)

Статьи

Нормализатор группы Шевалле типа E6E6

Н. А. Вавилов, А. Ю. Лузгарев

С.-Петербургский государственный университет, математико-механический факультет
Список литературы:
Аннотация: Мы рассматриваем односвязную группу Шевалле G(E6,R)G(E6,R) типа E6E6 в 27-мерном представлении. Основной целью работы является доказательство совпадения следующих четырех групп: нормализатор группы Шевалле G(E6,R)G(E6,R), нормализатор элементарной группы Шевалле E(E6,R)E(E6,R), транспортер E(E6,R)E(E6,R) в G(E6,R)G(E6,R), расширенная группа Шевалле G(E6,R)G(E6,R). Это совпадение имеет место для совершенно произвольного коммутативного кольца RR, а все нормализаторы и транспортеры здесь берутся в GL(27,R)GL(27,R). Кроме того, мы характеризуем ¯G(E6,R)¯¯¯¯G(E6,R) как стабилизатор системы квадрик. Этот результат классически известен для алгебраически замкнутых полей, в настоящей работе мы доказываем гладкость получающейся схемы над Z, откуда следует его справедливость для произвольного коммутативного кольца. На основе этих результатов мы явно выписываем уравнения, которым должна удовлетворять матрица gGL(27,R), чтобы принадлежать ¯G(E6,R). Эти результаты являются одним из основных инструментов в нашей следующей работе, посвященной надгруппам исключительных групп в минимальных представлениях.
Поступила в редакцию: 20.05.2007
Англоязычная версия:
St. Petersburg Mathematical Journal, 2008, Volume 19, Issue 5, Pages 699–718
DOI: https://doi.org/10.1090/S1061-0022-08-01016-9
Реферативные базы данных:
Тип публикации: Статья
MSC: 20G15
Образец цитирования: Н. А. Вавилов, А. Ю. Лузгарев, “Нормализатор группы Шевалле типа E6”, Алгебра и анализ, 19:5 (2007), 37–64; St. Petersburg Math. J., 19:5 (2008), 699–718
Цитирование в формате AMSBIB
\RBibitem{VavLuz07}
\by Н.~А.~Вавилов, А.~Ю.~Лузгарев
\paper Нормализатор группы Шевалле типа~$\mathrm{E}_6$
\jour Алгебра и анализ
\yr 2007
\vol 19
\issue 5
\pages 37--64
\mathnet{http://mi.mathnet.ru/aa135}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2381940}
\zmath{https://zbmath.org/?q=an:1206.20054}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 5
\pages 699--718
\crossref{https://doi.org/10.1090/S1061-0022-08-01016-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267421000002}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/aa135
  • https://www.mathnet.ru/rus/aa/v19/i5/p37
  • Эта публикация цитируется в следующих 29 статьяx:
    1. Elena Bunina, “Automorphisms of Chevalley groups over commutative rings”, Communications in Algebra, 52:6 (2024), 2313  crossref
    2. Anneleen De Schepper, Jeroen Schillewaert, Hendrik Van Maldeghem, Magali Victoor, “Construction and characterisation of the varieties of the third row of the Freudenthal–Tits magic square”, Geom Dedicata, 218:1 (2024)  crossref
    3. Roman Lubkov, Ilia Nekrasov, “Overgroups of exterior powers of an elementary group. levels”, Linear and Multilinear Algebra, 72:4 (2024), 563  crossref
    4. Р. А. Лубков, “Надгруппы элементарных групп в поливекторных представлениях”, Вопросы теории представлений алгебр и групп. 40, Посвящается памяти Николая Александровича ВАВИЛОВА, Зап. научн. сем. ПОМИ, 531, ПОМИ, СПб., 2024, 101–116  mathnet
    5. Р. А. Лубков, “Обратное разложение унипотентов в поливекторных представлениях”, Вопросы теории представлений алгебр и групп. 38, Зап. научн. сем. ПОМИ, 513, ПОМИ, СПб., 2022, 120–138  mathnet  mathscinet
    6. N. Vavilov, V. Migrin, “Colourings of exceptional uniform polytopes of types $\mathrm{E}_6$ and $\mathrm{E}_7$”, Теория представлений, динамические системы, комбинаторные методы. XXXIV, Зап. научн. сем. ПОМИ, 517, ПОМИ, СПб., 2022, 36–54  mathnet  mathscinet
    7. N. A. Vavilov, Z. Zhang, “Relative Centralizers of Relative Subgroups”, J Math Sci, 264:1 (2022), 4  crossref
    8. Lubkov R., “The Reverse Decomposition of Unipotents For Bivectors”, Commun. Algebr., 49:10 (2021), 4546–4556  crossref  mathscinet  isi  scopus
    9. N. A. Vavilov, Z. Zhang, “Relative centralisers of relative subgroups”, Вопросы теории представлений алгебр и групп. 35, Зап. научн. сем. ПОМИ, 492, ПОМИ, СПб., 2020, 10–24  mathnet
    10. N. A. Vavilov, “Towards the reverse decomposition of unipotents”, Вопросы теории представлений алгебр и групп. 33, Зап. научн. сем. ПОМИ, 470, ПОМИ, СПб., 2018, 21–37  mathnet; J. Math. Sci. (N. Y.), 243:4 (2019), 515–526  crossref
    11. Р. А. Лубков, И. И. Некрасов, “Явные уравнения на внешний квадрат полной линейной группы”, Вопросы теории представлений алгебр и групп. 33, Зап. научн. сем. ПОМИ, 470, ПОМИ, СПб., 2018, 120–137  mathnet; R. A. Lubkov, I. I. Nekrasov, “Explicit equations for exterior square of the general linear group”, J. Math. Sci. (N. Y.), 243:4 (2019), 583–594  crossref
    12. М. М. Атаманова, А. Ю. Лузгарев, “Кубические формы на присоединенных представлениях исключительных групп”, Вопросы теории представлений алгебр и групп. 29, Зап. научн. сем. ПОМИ, 443, ПОМИ, СПб., 2016, 9–23  mathnet  mathscinet; M. M. Atamanova, A. Yu. Luzgarev, “Cubic forms on adjoint representations of exceptional groups”, J. Math. Sci. (N. Y.), 222:4 (2017), 370–379  crossref
    13. A. Luzgarev, N. Vavilov, “Calculations in exceptional groups, an update”, Теория представлений, динамические системы, комбинаторные методы. XXIV, Зап. научн. сем. ПОМИ, 432, ПОМИ, СПб., 2015, 177–195  mathnet; J. Math. Sci. (N. Y.), 209:6 (2015), 922–934  crossref
    14. Н. А. Вавилов, А. Ю. Лузгарев, “Нормализатор группы Шевалле типа $\mathrm E_7$”, Алгебра и анализ, 27:6 (2015), 57–88  mathnet  mathscinet  elib; N. A. Vavilov, A. Yu. Luzgarev, “Normaliser of the Chevalley group of type $\mathrm E_7$”, St. Petersburg Math. J., 27:6 (2016), 899–921  crossref  isi
    15. N. A. Vavilov, “Decomposition of unipotents for $\mathrm E_6$ and $\mathrm E_7$: 25 years after”, Вопросы теории представлений алгебр и групп. 27, Зап. научн. сем. ПОМИ, 430, ПОМИ, СПб., 2014, 32–52  mathnet  mathscinet; J. Math. Sci. (N. Y.), 219:3 (2016), 355–369  crossref
    16. Н. А. Вавилов, А. Ю. Лузгарев, “Группа Шевалле типа $\mathrm E_7$ в 56-мерном представлении”, Вопросы теории представлений алгебр и групп. 20, Зап. научн. сем. ПОМИ, 386, ПОМИ, СПб., 2011, 5–99  mathnet; N. A. Vavilov, A. Yu. Luzgarev, “Chevalley group of type $\mathrm E_7$ in the 56-dimensional representation”, J. Math. Sci. (N. Y.), 180:3 (2012), 197–251  crossref
    17. И. М. Певзнер, “Ширина групп типа $\mathrm E_6$ относительно множества корневых элементов. II”, Вопросы теории представлений алгебр и групп. 20, Зап. научн. сем. ПОМИ, 386, ПОМИ, СПб., 2011, 242–264  mathnet; I. M. Pevzner, “Width of groups of type $\mathrm E_6$ with respect to root elements. II”, J. Math. Sci. (N. Y.), 180:3 (2012), 338–350  crossref
    18. И. М. Певзнер, “Геометрия корневых элементов в группах типа $\mathrm E_6$”, Алгебра и анализ, 23:3 (2011), 261–309  mathnet  mathscinet  zmath  elib; I. M. Pevzner, “The geometry of root elements in groups of type $\mathrm E_6$”, St. Petersburg Math. J., 23:3 (2012), 603–635  crossref  isi  elib
    19. А. С. Ананьевский, Н. А. Вавилов, С. С. Синчук, “О надгруппах $E(m,R)\otimes E(n,R)$. I. Уровни и нормализаторы”, Алгебра и анализ, 23:5 (2011), 55–98  mathnet  mathscinet  elib; A. S. Ananyevskiy, N. A. Vavilov, S. S. Sinchuk, “Overgroups of $E(m,R)\otimes E(n,R)$. I”, St. Petersburg Math. J., 23:5 (2012), 819–849  crossref  isi  elib
    20. И. М. Певзнер, “Ширина групп типа $\mathrm E_6$ относительно множества корневых элементов. I”, Алгебра и анализ, 23:5 (2011), 155–198  mathnet  mathscinet  elib; I. M. Pevzner, “Width of groups of type $\mathrm E_6$ with respect to root elements. I”, St. Petersburg Math. J., 23:5 (2012), 891–919  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Статистика просмотров:
    Страница аннотации:820
    PDF полного текста:309
    Список литературы:98
    Первая страница:10
     
      Обратная связь:
    math-net2025_04@mi-ras.ru
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025