Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 12, Pages 2074–2094
DOI: https://doi.org/10.31857/S0044466921120103
(Mi zvmmf11333)
 

This article is cited in 47 scientific papers (total in 47 papers)

Mathematical physics

Development of methods of asymptotic analysis of transition layers in reaction–diffusion–advection equations: theory and applications

N. N. Nefedov

Faculty of Physics, Lomonosov Moscow State University, 119991, Moscow, Russia
Citations (47)
Abstract: This work presents a review and analysis of modern asymptotic methods for analysis of singularly perturbed problems with interior and boundary layers. The central part of the work is a review of the work of the author and his colleagues and disciples. It highlights boundary and initial-boundary value problems for nonlinear elliptic and parabolic partial differential equations, as well as periodic parabolic problems, which are widely used in applications and are called reaction–diffusion and reaction–diffusion–advection equations. These problems can be interpreted as models in chemical kinetics, synergetics, astrophysics, biology, and other fields. The solutions of these problems often have both narrow boundary regions of rapid change and inner layers of various types (contrasting structures, moving interior layers: fronts), which leads to the need to develop new asymptotic methods in order to study them both formally and rigorously. A general scheme for a rigorous study of contrast structures in singularly perturbed problems for partial differential equations, based on the use of the asymptotic method of differential inequalities, is presented and illustrated on relevant problems. The main achievements of this line of studies of partial differential equations are reflected, and the key directions of its development are indicated.
Key words: singularly perturbed problems, asymptotic methods, boundary and interior layers, fronts, reaction–diffusion–advection equations, contrast structures, balanced nonlinearity, differential inequalities, Lyapunov asymptotic stability, asymptotic solution of inverse problems.
Funding agency Grant number
Russian Foundation for Basic Research 20-11-50080
This work was supported by the Russian Foundation for Basic Research, project no. 20-11-50080.
Received: 25.03.2021
Revised: 25.03.2021
Accepted: 04.08.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 12, Pages 2068–2087
DOI: https://doi.org/10.1134/S0965542521120095
Bibliographic databases:
Document Type: Article
UDC: 519.624.2
Language: Russian
Citation: N. N. Nefedov, “Development of methods of asymptotic analysis of transition layers in reaction–diffusion–advection equations: theory and applications”, Zh. Vychisl. Mat. Mat. Fiz., 61:12 (2021), 2074–2094; Comput. Math. Math. Phys., 61:12 (2021), 2068–2087
Citation in format AMSBIB
\Bibitem{Nef21}
\by N.~N.~Nefedov
\paper Development of methods of asymptotic analysis of transition layers in reaction–diffusion–advection equations: theory and applications
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 12
\pages 2074--2094
\mathnet{http://mi.mathnet.ru/zvmmf11333}
\crossref{https://doi.org/10.31857/S0044466921120103}
\elib{https://elibrary.ru/item.asp?id=46713031}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 12
\pages 2068--2087
\crossref{https://doi.org/10.1134/S0965542521120095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000742039500012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85122927402}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11333
  • https://www.mathnet.ru/eng/zvmmf/v61/i12/p2074
  • This publication is cited in the following 47 articles:
    1. E. I. Nikulin, B. T. Volkov, D. A. Karmanov, “Periodic Inner Transition Layers in the Reaction–Diffusion Problem in the Case of Weak Reaction Discontinuity”, VMU, 80:№1, 2025 (2025)  crossref
    2. N. N. Nefedov, “Existence, Asymptotics, and Lyapunov Stability of Solutions of Periodic Parabolic Problems for Tikhonov-Type Reaction–Diffusion Systems”, Math. Notes, 115:2 (2024), 232–239  mathnet  crossref  crossref  mathscinet
    3. S. A. Kaschenko, “Chains with Diffusion-Type Couplings Containing a Large Delay”, Math. Notes, 115:3 (2024), 323–335  mathnet  crossref  crossref  mathscinet
    4. E. I. Nikulin, V. T. Volkov, D. A. Karmanov, “Internal Transition Layer Structure in the Reaction–Diffusion Problem for the Case of a Balanced Reaction with a Weak Discontinuity”, Diff Equat, 60:1 (2024), 65  crossref
    5. Sergey Kashchenko, “Chains with Connections of Diffusion and Advective Types”, Mathematics, 12:6 (2024), 790  crossref
    6. V. I. Uskov, “Uravnenie vetvleniya dlya differentsialnogo uravneniya pervogo poryadka v banakhovom prostranstve c kvadratichnymi vozmuscheniyami malogo parametra”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody kraevykh zadach. Pontryaginskie chteniya—XXXIV», Voronezh, 3-9 maya 2023 g. Chast 4, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 233, VINITI RAN, M., 2024, 99–106  mathnet  crossref
    7. E. I. Nikulin, V. T. Volkov, A. G. Nikitin, “On contrast structures in a problem of the baretting effect theory”, Theoret. and Math. Phys., 220:1 (2024), 1193–1200  mathnet  crossref  crossref  mathscinet  adsnasa
    8. N. N. Nefedov, A. O. Orlov, “Existence and stability of stationary solutions with boundary layers in a system of fast and slow reaction–diffusion–advection equations with KPZ nonlinearities”, Theoret. and Math. Phys., 220:1 (2024), 1178–1192  mathnet  crossref  crossref  mathscinet  adsnasa
    9. P. E. Bulatov, Han Cheng, Yuxuan Wei, V. T. Volkov, N. T. Levashova, “Boundary control problem for the reaction–advection–diffusion equation with a modulus discontinuity of advection”, Theoret. and Math. Phys., 220:1 (2024), 1097–1109  mathnet  crossref  crossref  mathscinet  adsnasa
    10. N. T. Levashova, E. A. Chunzhuk, A. O. Orlov, “Stabilization of the front in a medium with discontinuous characteristics”, Theoret. and Math. Phys., 220:1 (2024), 1139–1156  mathnet  crossref  crossref  mathscinet  adsnasa
    11. E. I Nikulin, V. T Volkov, D. A Karmanov, “STRUKTURA VNUTRENNEGO PEREKhODNOGO SLOYa V ZADAChE REAKTsIYa–DIFFUZIYa V SLUChAE SBALANSIROVANNOY REAKTsII SO SLABYM RAZRYVOM”, Differencialʹnye uravneniâ, 60:1 (2024), 64  crossref
    12. A. A. Bykov, “Two-dimensional transient contrasting structure evolution in an inhomogeneous media with the advection”, VMU, 2024, no. №2_2024, 2420101–1  crossref
    13. A. Liubavin, Mingkang Ni, “Application of Asymptotic Methods to the Question of Stability in Stationary Solution with Discontinuity on a Curve”, Comput. Math. and Math. Phys., 64:6 (2024), 1286  crossref
    14. S. A. Kashchenko, “Logistic Equation with Long Delay Feedback”, Diff Equat, 60:2 (2024), 145  crossref
    15. D. A. Maslov, “About One Method for Numerical Solution of the Cauchy Problem for Singularly Perturbed Differential Equations”, Comput. Math. and Math. Phys., 64:5 (2024), 1029  crossref
    16. A. A. Bykov, “Evolution of a Two-Dimensional Moving Contrast Structure in an Inhomogeneous Medium with Advection”, Moscow Univ. Phys., 79:2 (2024), 140  crossref
    17. N. N. Nefedov, K. A. Kotsubinsky, “Existence and Stability of a Stationary Solution in a Two-Dimensional Reaction-Diffusion System with Slow and Fast Components”, VMU, 2024, no. №3_2024, 2430101–1  crossref
    18. S. A. Kashchenko, “Logistic equation with long delay feedback”, Differencialʹnye uravneniâ, 60:2 (2024)  crossref
    19. N. N. Nefedov, K. A. Kotsubinsky, “Existence and Stability of a Stationary Solution in a Two-Dimensional Reaction-Diffusion System with Slow and Fast Components”, Moscow Univ. Phys., 79:3 (2024), 301  crossref
    20. E.I. Nikulin, N.N. Nefedov, A.O. Orlov, “Existence and Asymptotic Stability of Solutions for Periodic Parabolic Problems in Tikhonov-Type Reaction–Diffusion–Advection Systems with KPZ Nonlinearities”, Russ. J. Math. Phys., 31:3 (2024), 504  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:215
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025