Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2024, Volume 220, Number 1, Pages 93–112
DOI: https://doi.org/10.4213/tmf10686
(Mi tmf10686)
 

Stabilization of the front in a medium with discontinuous characteristics

N. T. Levashova, E. A. Chunzhuk, A. O. Orlov

Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: We study the autowave front propagation in a medium with discontinuous characteristics and the conditions for its stabilization to a stationary solution with a large gradient at the interface between media in the one-dimensional case. The asymptotic method of differential inequalities, based on constructing an asymptotic approximation of the solution, is the main method of study. We develop an algorithm for constructing such an approximation for the solution of the moving front form in a medium with discontinuous characteristics. The application of such an algorithm requires a detailed analysis of the behavior of the solution in neighborhoods of two singular points: the front localization point and the medium discontinuity point. As a result, we obtain a system of equations for the front propagation speed; this distinguishes this paper from the previously published ones. The developed algorithm can be used to describe autowave propagation in layered media. The results can also be extended to the multidimensional case.
Keywords: parabolic equation, discontinuous coefficient, internal transition layer, method of differential inequalities, upper and lower solutions, asymptotically stable solution, moving front.
Funding agency Grant number
Russian Science Foundation 23-11-00069
This work was supported by the Russian Science Foundation (project No. 23-11-00069).
Received: 30.01.2024
Revised: 11.03.2024
English version:
Theoretical and Mathematical Physics, 2024, Volume 220, Issue 1, Pages 1139–1156
DOI: https://doi.org/10.1134/S0040577924070079
Bibliographic databases:
Document Type: Article
PACS: 02.30.Jr
MSC: 35K20
Language: Russian
Citation: N. T. Levashova, E. A. Chunzhuk, A. O. Orlov, “Stabilization of the front in a medium with discontinuous characteristics”, TMF, 220:1 (2024), 93–112; Theoret. and Math. Phys., 220:1 (2024), 1139–1156
Citation in format AMSBIB
\Bibitem{LevChuOrl24}
\by N.~T.~Levashova, E.~A.~Chunzhuk, A.~O.~Orlov
\paper Stabilization of the~front in a~medium with discontinuous characteristics
\jour TMF
\yr 2024
\vol 220
\issue 1
\pages 93--112
\mathnet{http://mi.mathnet.ru/tmf10686}
\crossref{https://doi.org/10.4213/tmf10686}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4778541}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024TMP...220.1139L}
\transl
\jour Theoret. and Math. Phys.
\yr 2024
\vol 220
\issue 1
\pages 1139--1156
\crossref{https://doi.org/10.1134/S0040577924070079}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85199930657}
Linking options:
  • https://www.mathnet.ru/eng/tmf10686
  • https://doi.org/10.4213/tmf10686
  • https://www.mathnet.ru/eng/tmf/v220/i1/p93
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:129
    Russian version HTML:2
    References:25
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025