Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2024, Volume 220, Number 1, Pages 44–58
DOI: https://doi.org/10.4213/tmf10685
(Mi tmf10685)
 

Boundary control problem for the reaction–advection–diffusion equation with a modulus discontinuity of advection

P. E. Bulatovab, Han Chenga, Yuxuan Weia, V. T. Volkova, N. T. Levashovaa

a Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
b Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We consider a periodic problem for a singularly perturbed parabolic reaction–diffusion–advection equation of the Burgers type with the modulus advection; it has a solution in the form of a moving front. We formulate conditions for the existence of such a solution and construct its asymptotic approximation. We pose a control problem where the required front propagation law is implemented by a specially chosen boundary condition. We construct an asymptotic solution of the boundary control problem. Using the asymptotic method of differential inequalities, we estimate the accuracy of the solution of the control problem. We propose an original numerical algorithm for solving singularly perturbed problems involving the modulus advection.
Keywords: Burgers equation, boundary control, asymptotic methods, small parameter, modulus nonlinearity, adaptive meshes, difference approximation.
Funding agency Grant number
Russian Science Foundation 23-11-00069
This work was supported by the Russian Science Foundation (project No. 23-11-00069).
Received: 30.01.2024
Revised: 25.03.2024
English version:
Theoretical and Mathematical Physics, 2024, Volume 220, Issue 1, Pages 1097–1109
DOI: https://doi.org/10.1134/S0040577924070043
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: P. E. Bulatov, Han Cheng, Yuxuan Wei, V. T. Volkov, N. T. Levashova, “Boundary control problem for the reaction–advection–diffusion equation with a modulus discontinuity of advection”, TMF, 220:1 (2024), 44–58; Theoret. and Math. Phys., 220:1 (2024), 1097–1109
Citation in format AMSBIB
\Bibitem{BulCheWei24}
\by P.~E.~Bulatov, Han~Cheng, Yuxuan~Wei, V.~T.~Volkov, N.~T.~Levashova
\paper Boundary control problem for the~reaction--advection--diffusion equation with a~modulus discontinuity of advection
\jour TMF
\yr 2024
\vol 220
\issue 1
\pages 44--58
\mathnet{http://mi.mathnet.ru/tmf10685}
\crossref{https://doi.org/10.4213/tmf10685}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4778538}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024TMP...220.1097B}
\transl
\jour Theoret. and Math. Phys.
\yr 2024
\vol 220
\issue 1
\pages 1097--1109
\crossref{https://doi.org/10.1134/S0040577924070043}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85199926764}
Linking options:
  • https://www.mathnet.ru/eng/tmf10685
  • https://doi.org/10.4213/tmf10685
  • https://www.mathnet.ru/eng/tmf/v220/i1/p44
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:144
    Full-text PDF :6
    Russian version HTML:10
    References:27
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025