Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2024, Volume 220, Number 1, Pages 137–153
DOI: https://doi.org/10.4213/tmf10658
(Mi tmf10658)
 

This article is cited in 1 scientific paper (total in 1 paper)

Existence and stability of stationary solutions with boundary layers in a system of fast and slow reaction–diffusion–advection equations with KPZ nonlinearities

N. N. Nefedov, A. O. Orlov

Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: The existence of stationary solutions of singularly perturbed systems of reaction–diffusion–advection equations is studied in the case of fast and slow reaction–diffusion–advection equations with nonlinearities containing the gradient of the squared sought function (KPZ nonlinearities). The asymptotic method of differential inequalities is used to prove the existence theorems. The boundary layer asymptotics of solutions are constructed in the case of Neumann and Dirichlet boundary conditions. The case of quasimonotone sources and systems without the quasimonotonicity requirement is also considered.
Keywords: singular perturbation, reaction–diffusion–advection equations, stationary solutions, KPZ nonlinearities, asymptotic method of differential inequalities, boundary layer, Lyapunov stability.
Funding agency Grant number
Russian Science Foundation 23-11-00069
This work was supported by the Russian Science Foundation (grant No. 23-11-00069).
Received: 14.12.2023
Revised: 25.03.2024
English version:
Theoretical and Mathematical Physics, 2024, Volume 220, Issue 1, Pages 1178–1192
DOI: https://doi.org/10.1134/S0040577924070092
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. N. Nefedov, A. O. Orlov, “Existence and stability of stationary solutions with boundary layers in a system of fast and slow reaction–diffusion–advection equations with KPZ nonlinearities”, TMF, 220:1 (2024), 137–153; Theoret. and Math. Phys., 220:1 (2024), 1178–1192
Citation in format AMSBIB
\Bibitem{NefOrl24}
\by N.~N.~Nefedov, A.~O.~Orlov
\paper Existence and stability of stationary solutions with boundary layers in a~system of fast and slow reaction--diffusion--advection equations with KPZ nonlinearities
\jour TMF
\yr 2024
\vol 220
\issue 1
\pages 137--153
\mathnet{http://mi.mathnet.ru/tmf10658}
\crossref{https://doi.org/10.4213/tmf10658}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4778543}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024TMP...220.1178N}
\transl
\jour Theoret. and Math. Phys.
\yr 2024
\vol 220
\issue 1
\pages 1178--1192
\crossref{https://doi.org/10.1134/S0040577924070092}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85199807033}
Linking options:
  • https://www.mathnet.ru/eng/tmf10658
  • https://doi.org/10.4213/tmf10658
  • https://www.mathnet.ru/eng/tmf/v220/i1/p137
  • This publication is cited in the following 1 articles:
    1. E.I. Nikulin, N.N. Nefedov, A.O. Orlov, “Existence and Asymptotic Stability of Solutions for Periodic Parabolic Problems in Tikhonov-Type Reaction–Diffusion–Advection Systems with KPZ Nonlinearities”, Russ. J. Math. Phys., 31:3 (2024), 504  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :3
    Russian version HTML:5
    References:28
    First page:21
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025