Abstract:
For the nonstationary radiative transfer equation, the inverse problem of determining the attenuation coefficient from a known solution at the domain boundary is considered. The structure and the continuous properties of the solution to an initial-boundary value problem for the radiative transfer equation are studied. Under special assumptions about the radiation source, it is shown that the inverse problem has a unique solution and a formula for the Radon transform of the attenuation coefficient is derived. The quality of the reconstructed tomographic images of the sought function is analyzed numerically in the case of various angular and time flux density distributions of the external source.
This work was supported by the Russian Foundation for Basic Research (project no. 20-01-00173) and by the Ministry of Science and Higher Education of the Russian Federation (agreement nos. 075-01095-20-00, 075-02-2020-1482-1).
Citation:
I. V. Prokhorov, I. P. Yarovenko, “Determination of the attenuation coefficient for the nonstationary radiative transfer equation”, Zh. Vychisl. Mat. Mat. Fiz., 61:12 (2021), 2095–2108; Comput. Math. Math. Phys., 61:12 (2021), 2088–2101
\Bibitem{ProYar21}
\by I.~V.~Prokhorov, I.~P.~Yarovenko
\paper Determination of the attenuation coefficient for the nonstationary radiative transfer equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 12
\pages 2095--2108
\mathnet{http://mi.mathnet.ru/zvmmf11334}
\crossref{https://doi.org/10.31857/S0044466921120115}
\elib{https://elibrary.ru/item.asp?id=46713032}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 12
\pages 2088--2101
\crossref{https://doi.org/10.1134/S0965542521120101}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000742039500013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85122726630}
Linking options:
https://www.mathnet.ru/eng/zvmmf11334
https://www.mathnet.ru/eng/zvmmf/v61/i12/p2095
This publication is cited in the following 6 articles:
M. A. Donskaya, I. P. Yarovenko, “O vybore metoda rozygrysha svobodnogo probega pri reshenii nestatsionarnogo uravneniya perenosa izlucheniya s ispolzovaniem graficheskikh uskoritelei”, Dalnevost. matem. zhurn., 24:1 (2024), 33–44
I. P. Yarovenko, P. A. Vornovskikh, I. V. Prokhorov, “Extrapolation of tomographic images based on data of multiple pulsed probing”, J. Appl. Industr. Math., 18:3 (2024), 583–597
Vasily G. Nazarov, Igor V. Prokhorov, Ivan P. Yarovenko, “Identification of an Unknown Substance by the Methods of Multi-Energy Pulse X-ray Tomography”, Mathematics, 11:15 (2023), 3263
Ivan P. Yarovenko, Igor V. Prokhorov, “An extrapolation method for improving the quality of tomographic images using multiple short-pulse irradiations”, Journal of Inverse and Ill-posed Problems, 2023
P. A. Vornovskikh, E. V. Ermolaev, I. V. Prokhorov, “On the problem of determining the scattering coefficient in frequency modulated sounding of a medium”, Dalnevost. matem. zhurn., 22:2 (2022), 263–268
I. P. Yarovenko, I. G. Kazantsev, “An extrapolation method for improving the linearity of CT-values in X-ray pulsed tomography”, Dalnevost. matem. zhurn., 22:2 (2022), 269–275