Abstract:
The present paper is a continuation of [A. A. Borovkov and A. A. Mogulskii, Theory Probab. Appl., 51 (2007), pp. 227–255]. In that paper we studied, in the univariate case, the asymptotics of the probabilities that a sum of independent identically distributed random variables will hit a half-interval [x,x+Δ) in the zone of superlarge deviations when the relative (scaled) deviations α=x/n unboundedly increase together with the number of summands n and, at the same time, remain in the analyticity domain of the large deviations rate function for the summands. In the multivariate case, the first part of the paper presented sufficient conditions which ensure that integrolocal and local theorems of the same universal type as in the large and normal deviations zones will also hold in the superlarge deviations zone. The second part of the paper deals with the same problems for three classes on the most wide-spread univariate distributions, for which one can obtain simple sufficient conditions, enabling one to find the asymptotics of the desired probabilities, as x/n→∞, in the above-mentioned universal form. These are the classes of the so-called exponentially and “superexponentially” fast decaying regular distributions. For them, we also establish limit theorems for the Cramér transforms with parameter values close to the “critical” one. Moreover, we obtain asymptotic expansion for the large deviations rate function.
Keywords:
large deviations rate function, large deviations, superlarge deviations, integrolocal theorem, semi-exponential distributions, superexponential distributions, characterization of the normal distribution, limit theorems for Cramér transforms, asymptotic expansions of the large deviations rate function.
Citation:
A. A. Borovkov, A. A. Mogul'skii, “On large and superlarge deviations of sums of independent random vectors under Cramér's condition. II”, Teor. Veroyatnost. i Primenen., 51:4 (2006), 641–673; Theory Probab. Appl., 51:4 (2007), 567–594
This publication is cited in the following 17 articles:
Igor Kortchemski, Cyril Marzouk, “Large deviation local limit theorems and limits of biconditioned planar maps”, Ann. Appl. Probab., 33:5 (2023)
L. V. Rozovskii, “Large deviations of a sum of independent random variables with distributions with rapidly decreasing tails”, Theory Probab. Appl., 67:3 (2022), 363–374
L. V. Rozovsky, “On Asymptotic Behavior of the Convolution of Distributions with Regularly Exponentially Decreasing Tails”, J Math Sci, 258:6 (2021), 920
L. V. Rozovskii, “Ob asimptotike svertki raspredelenii s regulyarno eksponentsialno ubyvayuschimi khvostami”, Veroyatnost i statistika. 28, Zap. nauchn. sem. POMI, 486, POMI, SPb., 2019, 265–274
Fan X., “Sharp Large Deviations For Sums of Bounded From Above Random Variables”, Sci. China-Math., 60:12 (2017), 2465–2480
L. V. Rozovskii, “Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distributions. II”, Theory Probab. Appl., 59:1 (2015), 168–177
N. V. Gribkova, R. Helmers, “Second order approximations for slightly trimmed means”, Theory Probab. Appl., 58:3 (2014), 383–412
Rozovsky L., “Super large deviation probabilities for sums of independent lattice random variables with exponential decreasing tails”, Statistics & Probability Letters, 82:1 (2012), 72–76
A. A. Borovkov, A. A. Mogul'skii, “Chebyshev type exponential inequalities for sums of random vectors and random walk trajectories”, Theory Probab. Appl., 56:1 (2012), 21–43
A. A. Borovkov, A. A. Mogul'skiǐ, “On large deviation principles in metric spaces”, Siberian Math. J., 51:6 (2010), 989–1003
A. A. Mogulskii, “Integralnye i integro-lokalnye teoremy dlya summ sluchainykh velichin s semieksponentsialnymi raspredeleniyami”, Sib. elektron. matem. izv., 6 (2009), 251–271
A. A. Mogulskiǐ, Ch. Pagma, “Superlarge deviations for sums of random variables with arithmetical super-exponential distributions”, Siberian Adv. Math., 18:3 (2008), 185–208
A. A. Mogul'skii, “An integro-local theorem applicable on the whole half-axis to the sums of random variables with regularly varying distributions”, Siberian Math. J., 49:4 (2008), 669–683
A. A. Borovkov, “Tauberian and Abelian theorems for rapidly decaying distributions and their applications to stable laws”, Siberian Math. J., 49:5 (2008), 796–805
A. A. Borovkov, A. A. Mogul'skii, “On Large Deviations of Sums of Independent Random Vectors on the Boundary and Outside of the Cramér Zone. I”, Theory Probab. Appl., 53:2 (2009), 301–311
L. V. Rozovskii, “Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distribution”, Theory Probab. Appl., 52:1 (2008), 167–171
A. A. Borovkov, A. A. Mogul'skii, “Integro-local and integral theorems for sums of random variables with semiexponential distributions”, Siberian Math. J., 47:6 (2006), 990–1026